

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III 1650 Arch Street Philadelphia, Pennsylvania 19103-2029

Ms. Deborah A. S. Hoag, P.E. Environmental Division Manager City of Reading 815 Washington Street Reading, Pennsylvania 19601-3690

JAN 0 3 2013

Re:

Pretreatment Program NPDES No. PA0026549

Dear Ms. Hoag:

Thank you for the submission of the City's annual pretreatment report for calendar year 2011. Please note that the City's NPDES permit requires that the report be submitted by March 31 of each year. However, the City's annual report for calendar year 2011 was submitted on July 3, 2012, which is more than three months late. Failure to submit the report by March 31 of each year is a violation of the City's NPDES permit and could subject the City to enforcement including penalties.

Thank you also for summarizing the influent, effluent, and sludge monitoring data on the spreadsheet provided by EPA. Use of the spreadsheet helps significantly with our processing of the data. For future reports, it would be helpful if all of the influent and effluent mercury data were included in the spreadsheet. Since the City typically conducts more than monthly monitoring for mercury, additional columns must be added to the spreadsheet to include all of the City's mercury data. The instructions sent with the spreadsheet should provide an explanation of how to add columns for the additional data, although if you need additional assistance please let me know. In addition, if more than one sample for the same sample point is collected on the same date, the results of the sampling for that date should be averaged and the average value entered in the spreadsheet. The instructions sent with the spreadsheet include a specific explanation on how to do this where some or all of the data is reported as non-detectable.

The City's report indicates that it assessed a significant number of penalties against the users for violations that occurred during the year. As occurs with many POTWs, not all of the penalties were paid as of the date of the report. In general, where not all of the assessed penalties were paid at the time of the report, follow-up information needs to be provided to show whether these penalties were eventually paid. Providing this update with the subsequent annual report is sufficient, although it can also be provided with any response to the EPA comments on the report. To date I have not received an update on the unpaid penalties listed in the City's annual reports for calendar years 2008, 2009, 2010, and 2011. Enclosed for your use is a set of tables showing the penalties that were listed as not having been paid for each of these years. Please provide an update of the status of payment of these penalties.

In reviewing the 2011 annual reports, EPA has continued the program in which specific pretreatment implémentation items for each approved program are being tracked. For calendar year 2011, the two measures previously used to track NPDES compliance have been combined into a single measure. In addition, a measure has been added to track POTW compliance with permit schedules for local limits reevaluation. Enclosed is a sheet that includes the data that I have collected for the Reading

pretreatment program for calendar year 2011, as well as a sheet that provides some additional information on the categories listed. An "Instruction Sheet" that provides more detail on each measure (with any changes from the 2010 measures indicated in bold) is also enclosed. Generally, the category ratings are not directly related to compliance, but "Category 1" would be considered the best rating for each measure. Finally, a summary of all of the POTW data collected so far for calendar year 2010 has been included to allow you to compare your program to the ratings achieved by POTWs in calendar year 2010.

Measure 1 (influent data) is listed in category 2 for mercury and zinc, and in category 3 for molybdenum. These exceedances continue the pattern of exceedances that have occurred over the last several years (see enclosed *List of Exceedances* report), and the City will need to take steps to address these exceedances. The City's annual report should include a description of steps taken to address the exceedances.

Measure 3 (sludge data) is listed in category 2 for molybdenum. Again, these exceedances continue a pattern of exceedances that have occurred over several years, and the City should take steps to address these exceedances as well.

Measure 4 (data/local limits) is listed in category 2 for mercury and zinc and in category 3 for molybdenum. For mercury and zinc, the influent exceedances without corresponding effluent or sludge exceedances suggest that the influent goals for these pollutants, and therefore potentially the local limits, are more stringent than they need to be. For mercury, the City's NPDES limit was relaxed in 2004 and the local limit evaluation based on this limit never updated to reflect the new limit. This is likely at least partly the cause of the influent goal exceedances for mercury. Although there has not been a revision to an NPDES limit for zinc, a reevaluation of the headworks analysis to adjust the influent goal is warranted based on the influent exceedances. For molybdenum, the corresponding influent and sludge exceedances suggest that the City's treatment plant is accepting too much of this pollutant. Since the City's currently approved local limits are almost 15 years old, it is possible that they are not stringent enough to adequately control molybdenum discharges. Although the City's annual report indicates that it believes that the elevated levels of molybdenum are the result of cooling tower chemicals used in the summer months, there is no description of actions by the City to identify specific users within the system. One place to start may be a comparison of the monitoring data at the two influent sample points to determine if there might be a more confined location where the higher levels of molybdenum originate.

Measures 7 and 8 (SNC rates) are listed in category 3 and measures 10 and 11 (also SNC rates) are listed in category 2. The City's report indicates that it has assessed and collected over \$100,000 in penalties for violations that occurred in calendar year 2011. While the user significant noncompliance rates have come down in the last several years, the rates are still relatively high, and many of the users that had significant noncompliance violations in calendar year 2011 also had significant noncompliance violations in calendar years 2010 and 2009. It is especially important that the City address these users that have been in significant noncompliance for long periods of time, and it is probably appropriate for the City to make greater use of compliance schedules as part of its enforcement actions with significantly higher penalties for failure to return to and maintain compliance after the schedule is completed.

Measure 16 (local limits) is listed in category 2. The City submitted a reevaluation of its local limits on May 5, 2006. I provided comments on that reevaluation on June 28, 2006 but the City never responded to those comments. Addressing those comments and finalizing the limits evaluation could address the influent exceedances discussed above and help ensure that the City's local limits are protective of the treatment plant and its discharges.

Measure 18 (streamlining) is listed in category 3. Although the City conducted an assessment of its current legal authority and determined that revisions are necessary to comply with the requirements of EPA's October 2005 amendments to the General Pretreatment Regulations, to date no revised ordinance has been submitted. The City must revise its ordinance quickly to ensure that it has sufficient authority to implement its pretreatment program as required. As suggested in the past, it is recommended that the City provide a draft of the ordinance revisions prior to adoption. Note that if the City is unable to implement required elements of its pretreatment program because it failed to update its legal authority, the failure to implement the program would still be considered a violation of the City's NPDES permit.

Measure 19 (overall rating) is listed in category 3 with a rating of 74.1. This is the same as the City's rating for calendar year 2010, and is well below the average rating received by POTWs in 2010 (85.9). Addressing the local limits and streamlining issues discussed above would help increase the City's rating, but to significantly improve the rating the City will need to address the high significant noncompliance rates along with the influent and sludge exceedances.

In a related matter, I conducted an audit of the City's pretreatment program in August 2005. While the City has addressed a number of the required actions from that audit, it has not completely addressed all of the required actions. Enclosed is a table that shows my understanding of the actions taken by the City to address these issues. Please provide additional information on the City's efforts to address the remaining issues that are shown as not having been completed.

Please provide a response to the issues raised above. If you have any questions regarding this matter, please contact me at 215-814-5790.

Sincerely,

John Lovell

Pretreatment Coordinator

NPDES Permits and Enforcement (3WP41)

Water Protection Division

Enclosures

cc: Maria Bebenek, PADEP Southcentral Region (w/out enclosures)

Ron Furlan, PADEP Central Office (w/out enclosures)

CITY OF READING, PENNSYLVANIA

RECEIVED EPA REGION III 503 N. 6TH STREET READING, PA 19601 (610) 655-6121

PUBLIC WORKS

JUL 1 6 2012

NPDES PERMITS BRANCH (3WP41)

DEBORAH A. S. HOAG
UTILITIES DIVISION MANGER

July 3, 2012

Mr. John Lovell (3WP41)
Office of Municipal Assistance
US Environmental Protection Agency
Region III
1650 Arch Street
Philadelphia PA 19103-2029

Dear Mr. Lovell:

As required by the City of Reading's NPDES Permit Number PA0026549, the City is to submit an annual report covering developments of the City's Pretreatment Program. Enclosed please find the annual report covering the period of January 1, 2011 to December 31, 2011.

Please do not hesitate to contact me at 610-655-6121 should you have any questions on the report.

Thank you for your attention.

Sincerely,

Deborah A. S. Hoag, PE Utilities Division Manger

Delval AS 1

DASH/ts Enclosure

C: Charles M. Jones, P.E., Director of Public Works
Jacqueline C. Hendricks, Environmental Program Coordinator
File

C

RECEIVED EPA REGION III JUL 1 6 2012 NPDES PERMITS BRANCH (3WP41)

CITY OF READING

ANNUAL PRETREATMENT REPORT

USPS 2305 0270 0001 7926 6699

REPORTING YEAR 2011

PRETREATMENT PERFORMANCE SUMMARY

RECEIVED EPA REGION III

I.	General Information		EPA REGION III
1.	OVIIOTI IIIOTIIIIIIOTI		JUL 1 6 2012
	Control Authority Name: City of Reading WWTP		
	Address: 815 Washington Street		NPDES PERMITS BRANCH (3VVP41)
	City: Reading State: PA	Zip: 19601-3690	(/
	Contact Person: Deborah A.S. Hoag, P.E.		
	Contact Title: Utilities Division Manager		
	Contact Telephone Number: (610) 655-6121		
	E-mail address: Deborah.Hoag@readingpa.org		
	NPDES Nos: PA 0026549		
	Permit Issuance Date: 05/01/01	Expiration Date:	05/01/06
	Reporting Period: 1/1/11 to 12/31/11		
	Total Categorical IUs (CIUs):	10	
	Total "Middle Tier" CIUs (MTCIUs):	0	
	Total Nonsignificant CIUs (NSCIUs):	0	
	Total Significant Noncategorical IUs (SNIUs):	25	
II.	Compliance Monitoring Program		
1.	No. of SIUs with Current Control Documents	35	
2.	No. of SIU Facilities Inspected	35	
3.	No. of SIU Facilities Sampled		
4.	No. of SIUs Submitting Self-Monitoring Reports	34	
III.	Significant Industrial User Compliance		
111.	Significant madstrar Osci Comphanee		
1.	No. of SIUs Violating a Compliance Schedule/No.	On a Schedule	0/0
2.	No. of SIUs in SNC for the July to December Period		
3.	No. of SIUs in SNC At Any Time During Calenda	r Year	8
4.	No. of SIUs in SNC That Were Also in SNC Durir	ng The Previous	
	Calendar Year		6
5.	No. of NSCIUs that violated any standards or requ	irements	N/A
IV.	Enforcement Actions		
1.	Notices/Letters of Violation Issued to SIUs	66	
2.	Enforcable Compliance Schedules Issued to SIUs		
3.	Civil/Criminal Suits Filed		
4.	No. of SIUs from which Penalties have been Colle		
5.	Other Actions (sewer bans, etc.)		
	, ,		
I	certify that the information contained in this rep	ort and attachments is	3
compl	ete and accurate to the best of my knowledge. (See l	Part B.V of the instruc	tions)
Dehor	ah A. S. Hoag, P.E. Utilities I	Division Manager	
		Title (Print)	
^	_		
_de	land ASH OU	/18/20,2	
	Signature	Date	

Pretreatment Annual Report

Part A – Pretreatment Performance Summary

I - General Information

Significant Users

At the end of the reporting period, the City of Reading had 35 significant industrial users, classifying 10 as categorical users and 25 as non-categorical users. Last year the City reported 34 significant industrial users of which 10 were categorical users. One new non-categorical user was added in 2011. All 35 of the users have current permits.

A new permit was issued to Packaging Corporation of America, effective May 1, 2011. This is a company that planned to open a new plant in the service area of the City of Reading Wastewater Treatment Plant. Start up was expected in December 2011. The permit that was issued to the company required notification to the City at least 30 days prior to the expected commencement of discharge along with details of the pretreatment system selected/installed. The company met these criteria. Packaging Corporation of America began operation and discharge in November 2011. The permit includes a limit for free cyanide and testing for free cyanide on a quarterly basis since no data is available for this parameter. The permit also contains a requirement for the submission of a Spill Plan. The SOP for City testing includes quarterly testing for free cyanide. The company assembles and finishes corrugated boxes. It is not a paper manufacturer and is not subject to categorical standards.

Exide Technologies is counted as one significant industrial user. However, the company traditionally was issued separate permits for the three plants that discharge wastewater to the City of Reading. For compliance monitoring (inspections, sampling and self-monitoring) and enforcement counts and spreadsheets, each plant is counted separately. The plants are physically separated but are all located within the boundaries of the Exide Technologies complex. Although ownership is the same, management and authorized representatives were different for these plants. This changed in 2011 and now there is one Plant Manager for the entire complex. In addition, authorized representatives for the Pretreatment Program are now the same for all plants. Significant developments at this company have occurred over the past two years. Plant One and Two essentially closed in 2010. Plant One was a battery charging operation. The discharge from the building was and continues to be sanitary only. Since the closure, there is minimal usage of the building facilities. The majority of the building along with the major employee facilities is shut down and not accessible. Plant Two was a distribution center. It is now used for offices and also for the locker and shower rooms for all employees. The discharge was and continues to be sanitary only. Shower water and many of the sinks discharge to the company's treatment plant and not to the City. The discharge from Reading Recycling was terminated in September 2011. This discharge also was sanitary only. All bathroom facilities have been removed from this building and there is now no discharge to the sampling point. Due to these changes, Exide Technologies will be classified as a non-significant user beginning in 2012 for the discharge at Plant Two. The City will continue to monitor Reading Recycling to verify that there is no discharge.

The new permit for Dietrich's Milk Products was issued to Dairy Farmers of America due to a change in the owner and operator of the company. There were no changes to the operations at the facility and no changes in personnel that would affect the Pretreatment Program.

The new permit for Prizer Works was issued to Prizer Painter Stove Works. There was no change in ownership. The name change was a corporate decision by the current owners. There were no changes to the operations at the facility and no changes in personnel that would affect the Pretreatment Program.

The new permit for Orograin Manufacturing Bakeries was issued to Orograin Bakeries. There was no change in ownership. It was a decision by the current owners to abbreviate the name. There were no changes to the operations at the facility and no changes in personnel that would affect the Pretreatment Program.

A new permit was written for Crescent Brass Manufacturing. The prohibition against the discharge of any casting cleaning discharge without the prior consent of the City was continued in this permit. A clause was added stating that the City reserves the right to observe the operation of the hydrofiltration system. Process wastewater is treated through this system and reused in operations. Because of this, the company is classified as a zero industrial wastewater discharge facility. The discharge from the facility is domestic wastewater from the employees which includes a shower and locker room. As a follow up on information filed with the 2010 Annual Report, the company did file their permit application in 2011. They apparently are no longer using the consultant who was resistant to having this company in the Pretreatment Program. All self-monitoring reports were filed for 2011 with the signature of the authorized representative and the company did not resist the annual inspection.

Non-Significant Users

The City also has 12 users classified as non-significant due to their minor flows and/or the low probability of potential problems. This is a decrease from the 14 reported in the last annual report. Getty Petroleum and Perception did not renew their permits. Both permits expired September 30, 2011. They are both groundwater remediation systems. Getty Petroleum shut down their system in July 2010. Perception shut down their system in April 2009. The permit renewal letters sent to these companies explained that if the permit is not renewed, the system cannot be put back into operation unless the company first notifies the City, files a new permit application and receives a new permit. It was explained that the permit application must be filed at least 90 days prior to the date when the discharge will begin or recommence. The companies are no longer included in the spreadsheets and industrial user listing for the 2011 Annual Report.

The current list of industrial users with their addresses is attached as **Appendix 1**.

II - Compliance Monitoring Program

Appendix 2 provides a listing with issuance and expiration dates for all significant and non-significant user control documents along with the number of inspections, sampling visits and self-monitoring events required and conducted during the year. The City uses permits for its control mechanism for significant and non-significant users. All 35 significant industrial users

have current control documents. All permits are individual. No general control mechanisms (permits) are used. For CIUs, the City has not assigned mass based limits in place of concentration based categorical limits. For CIUS, the City has not assigned concentration based limits in place of mass based categorical limits. The City has not granted a monitoring waiver for any CIU for any categorically regulated pollutants in accordance with 40 CFR 403.12(e)(2). All 35 significant industrial users were inspected during the year. The City requires self-monitoring for all of its significant industrial users. For one industrial user, Orograin Manufacturing Bakeries, the City performs all of the testing for one parameter only. The City performs all testing for color in its own laboratory. The industry is required to do self-monitoring for all other parameters. This decision was based on the results of a split sample study. The City understands that any violation for color in its testing requires a resampling within 30 days in accordance with the Pretreatment Regulations.

Beginning with permits issued effective April 1, 2010, other items in the June 28, 2006 letter addressing the last EPA audit of the City's Pretreatment Program were also addressed. These permits include a limit for free cyanide. A number of these permits do not require testing for free cyanide. This determination was made based on a data review, facility inspections and documents from the company demonstrating that there is no reasonable potential for violation of the local limit for free cyanide and is documented in each permit. However, testing for free cyanide was added to some of the permits as described in the Notes section of the Increased Industrial Sampling spreadsheet in **Appendix 3.** If self-monitoring for any other local limits pollutants is not required twice a year in these permits, documentation based on a data review and facility inspections is included in each permit demonstrating that there is no reasonable potential for violation of the local limit for these particular pollutants. These permits contain a justification for the number of grab samples required for those pollutants that require sampling in this manner. They also contain a justification for the requirement for sampling in certain months of the year.

Beginning with permits issued effective April 1, 2010, the following permit conditions are included as sent to the EPA in April 2010:

D. Other Permit Conditions

The permittee shall notify the City immediately of any changes at the facility affecting the potential for a slug discharge. A slug discharge is any discharge of a non-routine, episodic nature, including but not limited to an accidental spill or a non-customary batch discharge, which has a reasonable potential to cause interference or pass-through, or in any other way violate the POTW's (publicly owned treatment works) regulations, local limits or permit conditions.

The Permittee shall maintain or provide documentation demonstrating compliance with the best management practices listed below.

•	A Spill Prevention and Contr	ol Plan (Accidental Discharge/Slug Control Plan) that ha
	been submitted to the City fo	r approval must be maintained and implemented by the
	Permittee. A plan entitled	, dated
	and signed	was submitted to the City for approval. The
	Permittee is required to main	tain and implement this plan at its facility.

All 35 significant industrial users were inspected and sampled by the City during the year. City sampling of significant users varies from monthly to annually. Exide Technologies – Plant One was sampled on a quarterly basis by the City. The City discontinued testing in the second half of 2010. Production in this building ceased on June 7, 2010 followed by cleanup of the production areas. The company continued sampling as required by permit. The discharge from the building is sanitary only. The closure resulted in minimal usage of the building facilities. The majority of the building along with the major employee facilities is shut down and not accessible. Exide Technologies – Reading Recycling could not be sampled in the fourth quarter because there was no discharge, as described below. Packaging Corporation of America was sampled one time in 2011 because the company began operations in November.

Significant users are required to submit self-monitoring reports at varying frequencies but not less than twice per year. All significant industrial users submitted all required self-monitoring reports during the year. Exide Technologies - Reading Recycling submitted three selfmonitoring reports. A report for the fourth quarter could not be submitted. As described in more detail in Part A. III, the company removed all sources of sanitary discharge to the sampling point in September 2011. The sanitary discharge is the only discharge to the sampling point. The company verified that there was no discharge to the sampling point in the fourth quarter and therefore could not conduct testing in this quarter. By its permit, Packaging Corporation of America was not required to perform self-monitoring in 2011. This is because expected start up was December of 2011. The first required self-monitoring is January 2012. The permit required that the company notify the City at least 30 days prior to start up and the City reserved the right to begin sampling after start-up. The company began operations in November and the City sampled in December. Sealed Air Corporation could not perform the required weekly color testing for two weeks in September. This was due to flooding at the plant from the river rising after a hurricane and extreme rain event. The plant was closed for two weeks due to the flood event.

Two significant industrial users were cited for Failure to Report. Cloister Car Wash and Lube submitted its third quarter self-monitoring report in a timely manner but did not submit all of the tests required by permit for the third quarter. Its contract laboratory did not perform all of the The missing tests were performed, submitted to the City and were in compliance. Termaco USA did not submit its third quarter self-monitoring report within 30 days after the due date. The report was subsequently submitted to the City and was in compliance. This is described in Part A. III. These users received administrative penalties and were published as facilities in SNC for Failure to Report. Beginning with the third quarter of 2005, the City is using Late Sampling as a noncompliance category. Late Sampling is applied when the self-monitoring report is received in a timely manner but the testing submitted is performed in a month or time frame other than required by the permit. One significant industrial user was cited for Failure to Resample. The user and parameter in non-compliance is: St. Joseph Medical Center Downtown for mercury at outfall 006 in the fourth quarter. The user submitted the required resample and returned to compliance. This is described in Part A. III. This user received an administrative penalty and was published as a facility in SNC for Failure to Resample.

During the year, the City conducted sampling in excess of the proposed amount at a number of facilities to assess compliance after violations. A number of facilities conducted self-monitoring above the required amount for the same reason. These events were done at the facility's initiative or voluntarily following the City's request. The Increased Industrial Sampling spreadsheet shows details of this and is included in Appendix 3. The number of additional sampling events on this spreadsheet does not always correspond with the Compliance Monitoring spreadsheet in Appendix 2 that covers all sampling events for the year. This is because City sampling events for issues other than compliance (additional sampling for conventional pollutants for surcharge billing) are not included in the Increased Industrial Sampling spreadsheet. In some cases, the City or the industry tested for additional parameters during a required or scheduled sampling event. In this case, the additional sampling performed column has been left blank and only the tests are listed. Required industrial resamples following violations are not included on any of the spreadsheets. Separate spreadsheets are included for significant industrial users and nonsignificant industrial users. The Increased Industrial Sampling spreadsheet also includes a Notes section. In this section, formal changes in sampling frequency are described. instances where the industrial user's permit or the City's SOP for an industrial user was changed to increase the frequency of testing for a parameter of concern.

While not required to report on non-significant industrial users, the City has always included this information in the Annual Report. All non-significant industrial users were sampled by the City during the year, except Ultra Wash of Philadelphia. Ultra Wash of Philadelphia is permitted for possible batch discharge only and therefore monitoring by the City is not planned. City sampling of non-significant users varies from quarterly to annually with the exception of Ultra Wash of Philadelphia.

Non-significant users are required to submit self-monitoring reports at varying frequencies but not less than once a year. Ultra Wash of Philadelphia is required to report quarterly on whether there has been a discharge to the sewer system. All non-significant industrial users submitted all required self-monitoring reports during the year.

No non-significant industrial users were cited for Failure to Report. One non-significant industrial user was cited for Failure to Resample. The user and parameter in non-compliance is: Paragon Optical Company for copper at outfall 002 in the third quarter. The required resample has not yet been submitted to the City. This is described in Part A. III. This user received an administrative penalty and was published as a facility in SNC for Failure to Resample.

III - Significant Industrial User Compliance

Compliance Schedules

There are no significant users on a formal compliance schedule as of the end of 2011.

List of significant users in SNC anytime in 2011

An explanation of the individual facilities, both significant and non-significant, in SNC during the reporting year follows below. The number of SIUs in SNC at any time during the calendar year was 8. The number of SIUs in SNC for the July to December Period (fourth quarter) was 2. 5 of the 8 SIUs that were in SNC during the calendar year were in SNC for one quarter only. One of these 5 SIUs was in SNC for Failure to Report. 3 other SIUs were in SNC for more than one

quarter. Two of these companies have already taken measures to solve their non-compliance issues. The remaining industry has eliminated the discharge. This was a sanitary only discharge and the company removed all bathroom facilities in the building.

The table below summarizes SNC by quarter. The first column shows the number of SIUs in SNC for the quarter. The second column shows the number of SIUs that were also in SNC for the previous quarter. The third column shows the number of new SIUs in SNC (not in SNC in the previous quarter). The fourth column shows the number of SIUs that were in SNC in the previous quarter but were not in SNC for the current quarter (returned to compliance or inconsistent noncompliance).

2011	SNC	SIUs in Repeat SNC	New SIU in SNC	SIUs that Returned to Compliance
1 st quarter	3	1	2	3
2 nd quarter	3	1	2	2
3 rd quarter	6	2	4	1
4 th quarter	2	2	0	4

The table below shows the compliance status of the SIUs by quarter for the 2011 year. The number of SIUs in the first column had no violations for the quarter. The number of SIUs in the second column had violations that did not result in SNC. The number of SIUs in the third column had violations resulting in SNC.

2011	Compliance	Inconsistent Noncompliance	SNC
1 st quarter	27	4	3
2 nd quarter	23	8	3
3 rd quarter	23	5	6
4 th quarter	29	4	2

These facilities are the *significant users* that were in SNC for the year.

+ 2010 Cloister Car Wash and Lube Nature of violations:

1st Quarter – TRC and chronic violation of the zinc limit listed in its permit 2nd Quarter – TRC violation of the zinc limit listed in its permit 43200

3rd Quarter – Failure to Report

No scheel.

Actions planned and current compliance status:

Previous violations were traced to the wheel cleaner used. In 2010, the company installed a 300 gallon tank in the trench drain in the automatic car wash under the wheel wash section. Wastewater from this tank is pumped to the control/equipment room where it is filtered and then discharged to the last of 3 x 1800 gallon underground settling tanks for wastewater from the car wash. The underground settling tanks are pumped out by an outside contractor twice a year. In addition, the 300 gallon tank is pumped out regularly by a contractor. After the violations in the first quarter, the company increased the schedule for pumping out its settling tanks and began to investigate upgrading the zinc filtration method, if necessary. SNC for the second quarter is based solely on violations that occurred in the first quarter. The company was in compliance for all three tests conducted for zinc in the second quarter and was also in compliance at the end of the year. The company and the City test quarterly for zinc. Due to past violations, the fine for any zinc violation was escalated twice and is now at \$500 per occurrence, in accordance with the City's Penalty Escalation Policy.

The self monitoring testing that was submitted for the third quarter was incomplete. Some of the testing required in August by the company's permit was not performed by its contract laboratory. The missing tests were performed in December, submitted to the City and were in compliance.

Clover Farms Dairy 2010 Nature of violation:

2nd Quarter – TRC violation of the oil/grease (HEM) limit listed in its permit 421,400 Actions planned and current compliance status:

A Consent Agreement with Clover Farms Dairy terminated on July 31, 2008. The agreement was for compliance with the oil and grease and pH limits in its permit. The company hired a consulting firm to work on the compliance issues. At the request of this firm, the agreement was written with two pathways to achieve compliance. These alternatives were equalization and pH adjustment or DAF technology. Each alternative had a separate termination date to achieve Segregation and hauling of wastewater high in oil and grease along with equalization and pH adjustment of the majority of the wastewater was chosen. The final compliance date for this approach was July 31, 2008. This Consent Agreement was signed on December 29, 2006.

The construction of this system did not return the company to compliance. It is possible that the sampling and testing studies conducted by the consulting firm were inaccurate. The design plans were based on these studies. The company continued its effort to divert additional waste streams to the segregation tank. Company engineers also made a number of modifications to the original system. None of these efforts were successful. In 2009 the company hired another engineering firm to design a building and DAF system. Subsequently, it hired a second firm to work on land development and zoning approvals from the township in which the company is located. The

company met with township officials, the Planning Commission, and the Zoning Hearing Board. The City expected to write another Consent Order or Agreement in 2010 after the company had a better idea of how long the approvals would take and if there are any major impediments. Township approvals were responsible for some of the delays during the 2006 Consent Agreement. However, the company did not communicate with the City concerning a time schedule for completion of the project. The City continued to make contact with the company concerning its progress and the company indicated that it was still experiencing delays with the township. The company was in SNC for oil and grease for all four quarters in 2009 and 2010.

The City and the company test monthly for oil and grease. For the entire 2011 year, the company was in compliance with its oil and grease limit on self-monitoring testing. For the City testing, there were violations for the first six months of 2011. Beginning with July 2011, there were no violations for oil and grease on City testing. In December 2011, the City was asked to attend a meeting with the company's lawyer. No company representatives were in attendance. The lawyer wanted permission from the City to abandon plans for the DAF system because it found an alternative way to achieve compliance that would be much less expensive. The lawyer stated that the company is now manually skimming the equalization tank and this is the factor that has lead to compliance. The City requested additional information on the method being used to achieve compliance. A visit to the facility was discussed. The City also stated that a more permanent method for pH control would still be needed as well as a sampling manhole. These would have been included in the DAF system plan. After the meeting, City officials decided to begin second and third shift sampling to confirm that compliance with the oil and grease limit is not limited to the day shift. This was begun in January 2012. In December 2011, the City already began additional oil and grease sampling during the day shift at Clover Farms Dairy because of the dramatic change in the number of violations in 2011.

In January 2012, a meeting was held with the company's authorized representative and the company's lawyer. Due to the company's compliance record with the manual skimming of the equalization tank twice a day, the company wants to cancel plans for the installation of a DAF system. In order to maximize the effect of skimming, the company is obtaining a quote to install an automatic skimmer in the equalization tank. The City stated again that a more permanent method for pH control would still be needed as well as a sampling manhole. The company stated that if the automatic skimmer is successful in controlling oil and grease, it would install a large pH adjustment tank after the equalization tank and a sampling manhole. If the skimmer is not successful, the company would install the DAF system which would require pH control and a sampling manhole would be installed. The City decided that the best way to handle this is through a COA. However, it was also decided that any COA would have to be approved by EPA since the Enforcement Branch of the EPA is conducting its own investigation of the company. Because of the history of non-compliance and the amount of time that has passed without a permanent solution, any COA written would not include any reduction in fines during the COA.

Prior to signing the 2006 Consent Agreement, the fine schedule was \$1500 per occurrence for an oil and grease violation. For the duration of the Consent Agreement, the fine for any oil and grease violation was set at \$500 per occurrence. This fine amount continued after the termination of the Consent Agreement on July 21, 2008. Beginning with the first quarter of 2009, the fine for any oil and grease violation was escalated in accordance with the City's Penalty Escalation

Policy. The fine went from \$500 to \$1000 per occurrence in the first quarter of 2009. Since that time there were three additional escalations per occurrence. In the third quarter of 2009, the fine was increased to \$1500. In the first quarter of 2010, the fine was increased to \$2000. In the third quarter of 2010, the fine was increased to \$2500. In the first quarter of 2011, the fine was increased to \$3000. The fine remains at this amount since there have been no violations since July 2011.

Exide Technologies – Reading Recycling
Nature of violations:

1st Quarter - TRC violation of the copper limit listed in its permit

1st Quarter – TRC violation of the zinc limit listed in its permit

3rd Quarter – TRC violation of the copper limit listed in its permit

3rd Quarter – TRC violation of the zinc limit listed in its permit

4th Quarter – TRC violation of the lead limit listed in its permit

4th Quarter – TRC and chronic violation of the copper limit listed in its permit

4th Quarter – TRC and chronic violation of the zinc limit listed in its permit

\$400 No 50 led

Actions planned and current compliance status:

The building producing the permitted discharge had a fire resulting in structural damage in May of 2009. Employees using the facilities in this building were directed to bathrooms and showers in other Exide buildings in the complex. Even after the building was restored at the end of November 2009, use of the building by the employees was not reinstated. The locker room was set up for contractor use only. However, the possibility of employees still using the bathrooms for convenience has to be considered. The discharge from the building is sanitary only and does not include the shower water. There is no industrial discharge. Due to previous violations, the company investigated other potential sources of discharge to the sampling point. Early in 2011 the company found another bathroom facility with a floor drain and showers that discharged to the sampling point. This bathroom was taken out of service. All fixtures were removed and the drains were sealed shut. SNC for the first quarter of 2011 is based solely on violations that occurred in the fourth quarter of 2010.

After the violations that occurred in the third quarter, the company hired an outside contractor to trace the lines to make sure that there were no other sources of discharge. They then removed the remaining three toilets in the building which eliminated all known sanitary discharges to the outfall. This was done in September 2011. The company did not return to compliance for copper and zinc but did return to compliance for lead. Additional sampling could not be done due to the lack of discharge. No sampling was done in the fourth quarter for this reason. SNC for the fourth quarter is based solely on the violations that occurred in the third quarter. The City plans to set up a sampler for a week to verify the lack of discharge and will probably continue random checking of this outfall in the future as long as it is open. The company has not yet decided whether or not the outfall will be permanently capped.

Hofmann Industries, Inc.

Nature of violation:

1st Quarter – Chronic violation of the maximum monthly average limit for zinc listed in its permit

Actions planned and current compliance status:

This is a categorical industrial user and has a maximum monthly average limit for a number of parameters including zinc. Because zinc plating is done, this is a metal of concern. pretreatment system in operation. The violation was a result of a high zinc result on the City test conducted during the month of March. The cause of the violation on this day could not be determined by the company. The company conducted six additional voluntary tests later in the month and each result was below the monthly average limit for zinc. However, because of the magnitude of the violation on the City test, there is still a chronic violation of the maximum monthly average for March. Another chronic violation of the maximum monthly average limit for zinc occurred during the fourth quarter of 2010. The City tests twice a year and the company tests four times a year for metals of concern which includes zinc. In addition, the company performs voluntary additional testing for zinc and chromium. The company has returned to compliance and had no other violations for the rest of the year.

+ 2010 National/Yorgey's Cleaners Nature of violations:

3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Ouarter – TRC violation of the oil and grease (SGT-HEM) limit listed in its permit

1300

Actions planned and current compliance status:

SNC is based on one violation each for HEM and SGT-HEM in the two tests conducted. The violations occurred during the same sampling event. The company has not had an oil and grease violation since the fourth quarter of 2009. The company returned to compliance. The company had no other oil and grease violations during the year.

Orograin Manufacturing Bakeries +2010 Nature of violation:

> 3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit at 1300 outfall 001

Actions planned and current compliance status:

SNC is the result of one violation in the three tests conducted. The company believes that the violation was caused by the cleaning of equipment near a floor drain by an employee who did not take the usual measure to prevent high strength wastewater from entering the drain. The company returned to compliance in a test conducted less that a week later and in testing conducted during the fourth quarter.

St Joseph Medical Center Downtown

Nature of violations:

2nd Quarter – TRC and chronic violation of the mercury limit listed in its permit at

3rd Quarter – TRC and chronic violation of the mercury limit listed in its permit at

4th Quarter – TRC violation of the mercury limit listed in its permit at outfall 006

4th Quarter – Failure to Resample

Actions planned and current compliance status:

SNC for the second quarter is based on one violation on the one testing event conducted during the first half of the year. SNC for the third quarter is based on two violations on the two testing events conducted during the rolling six month period used to calculate SNC. This includes the

800 No school

violation cited for the first half of the year. The company attributed the first violation to a recent pumping out of the lift station where sampling is done and the second violation to problems with the pumps at the lift station. The probable source of the mercury at this outfall is from a dental clinic. The filtration system for reclaiming fillings in the clinic was checked to ensure there were no problems. The company will look into a new system if violations persist. The company returned to compliance in two tests performed in the fourth quarter. These tests were conducted after the company installed two new pumps at the lift station.

The company failed to resample and report within 30 days following a mercury violation at outfall 006 on a test that the company voluntarily conducted. The resample was conducted and was in compliance.

Termaco USA, Inc. + LOID

Nature of violation:

3rd Quarter – Failure to Report

\$1000

Actions planned and current compliance status:

The self-monitoring report for the third quarter was not submitted with 30 days after the due date. The report was subsequently submitted to the City and was in compliance.

The following facilities are *non-significant users* in SNC for the year.

Paragon Optical Company

Nature of violations:

1st Quarter – TRC violation of the copper limit listed in its permit

2nd Quarter – TRC and chronic violation of the copper limit listed in its permit

3rd Quarter – Failure to Resample

4th Quarter – TRC violation of the copper limit listed in its permit

Actions planned and current compliance status:

The company did not have metals violations for three years. Violations began in the fourth quarter of 2009. The company has been monitoring the discharge and cleanouts of the solids retention sump more closely and this has controlled the discharge of metals with the exception of copper. The company did not return to compliance for copper by the end of the year. The company has not been successful in determining the cause of the violations. The City will be meeting with the company in 2012 to seek a resolution to the violations that have occurred. The company achieved compliance in the past. The City intends to investigate factors that have changed since that time including product and production changes, economic factors and sampling procedures. All but one of the violations in 2011 occurred in self-monitoring events. The City monitors for metals of concern including copper on a quarterly basis.

The company failed to resample and report within 30 days following a copper violation. The required resample has not yet been submitted to the City.

Unique Pretzel Bakery

Nature of violation:

2nd Quarter – TRC violation of the chromium limit listed in its permit Actions planned and current compliance status:

SNC for chromium is based on one violation in the two sampling events for chromium conducted in the first half of the year. The company is not sure of the cause of the violation.

Due to the nature of the business, sampling can only be conducted four times a year when the tanks are discharged to the sewer. These discharges are coordinated so that the company can perform two self-monitoring tests and the City can perform two tests each year. Chromium testing is performed once a year by both the company and the City because in the past this has not been a pollutant of concern. The discharge occurs for only a short period of time and the composite sample is composed of two grabs. One is taken during tank discharge and one is taken during the discharge of tank cleaning water. The only outfall - which was the sampling point - receives all the discharges from the facility. For these reasons, the company installed a receiving tank for all of the process discharge where equalization and pH adjustment can be done. Sampling can now be done directly from this tank. The company returned to compliance in the third quarter after the receiving tank was installed and sampling was conducted from the tank.

Van Bennett Food Company

Nature of violations:

2nd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit

Actions planned and current compliance status:

The exact cause of the violations is unknown but the company has reviewed SOPs with management and employees relative to procedures for maintaining compliance with its oil and grease limit. The company has returned to compliance. Six tests are conducted annually for oil and grease between the City and self-monitoring.

Repeat SNC from the Prior Year

Industrial Users that were in SNC for this reporting year that were also in SNC for the previous reporting period are found in **Appendix 4**. This appendix also lists the parameter or reason for the industrial user being in SNC for both years. The one industry that did not return to compliance by the end of 2011 is Exide Technologies. Since the discharge to the outfall has been discontinued, a return to compliance is not possible. However, the City will continue monitoring this outfall for a period of time to ensure there is no discharge. This is described in Part III above.

Newspaper Listing

The significant users in significant non-compliance at any time during the reporting year are found in the newspaper listing attached as **Appendix 5**. The City used the rolling six-month time frame as required by 40 CFR 403.8 (f)(2)(viii) and reported all significant violators on a quarterly basis.

Exide Technologies – Reading Recycling was not published for first quarter 2011 SNC. Their SNC for the first quarter is based solely on violations that occurred in the fourth quarter of 2010. The company was already published for reporting year 2010 for SNC in the fourth quarter for copper and zinc. All testing for copper and zinc in the first quarter was in compliance.

IV - Enforcement Actions

Appendix 6 provides a list of the following for both significant and non-significant industrial users:

Notices of violation
Number and nature of violations
Compliance orders
Total penalties assessed in 2011 and the reasons for the penalties

The City issued 66 Notices of Violation for 2011. This is a decrease from the 103 NOVs reported for the 2010 year. This is the lowest number of NOVs issued for a calendar year in over 8 years. Also, only 19 SIUs received NOVs for 2011 which is the lowest number of SIUs having NOVs leading to the highest compliance rate in recent history. It is attributed to working informally but aggressively with industries having compliance issues in order to seek solutions prior to the necessity of a Consent Agreement. Another major factor is the City's Penalty Escalation Policy. Under this program, the penalty is escalated after two consecutive quarters with one or more TRC violations for the same parameter. The penalty escalates again after two more consecutive quarters with one or more TRC violations for the same parameter. If there is a quarter without a violation, the penalty remains at the same level for the next two quarters. The penalty returns to the base amount after four consecutive quarters without a violation for the parameter in question. Although there are some industries that are still having penalties escalated, others have been able to return to the base amount through continued compliance. The penalty escalation program has also been a positive factor in working with industries to enter into a Consent Agreement. The penalty escalation program has been in effect since 2003.

All SIUs that had violations were subject to enforcement action by the City. All NOVs issued to SIUs by the City were followed with an administrative penalty during the next billing cycle. The initial penalty schedule is found in **Appendix 6**. A number of facilities have had penalties escalated due to recurring violations for the same parameter which is also detailed therein.

Compliance Schedules

There were no compliance schedules issued in 2011. A Consent Order or Consent Agreement (COA) may be written for Clover Farms Dairy. The compliance history of this company and its current status is thoroughly described in Part A.111 above. The City intends to proceed cautiously in the decision to write such a document and secure EPA review and input of the draft COA prior to any discussion or presentation of the document to the company. The City does not intend to include any reduction in fines in a new COA. The City does intend to require pH adjustment, a new sampling point (sampling manhole) and flow metering of the discharge. The company and its lawyer appear to want the City's approval or consent to abandon plans for a DAF system in favor of the installation of skimmers to control oil and grease. The City is interested in consistent compliance at all times and representative sampling and the method of achieving this is the responsibility of the company. The City had discussions with Dietrich's Milk Products (now Dairy Farmers of America) in 2010 in regard to a Consent Agreement. It was expected that a Consent Agreement would be signed with this company in 2011. However, there was a lot of rewriting and revision of the City's standard Consent Agreement by the company's lawyers. In the meantime, the company continued with their plans to install DAF technology to control pH and oil and grease. The time delays with the Consent Agreement rendered it unnecessary. The DAF system was put into operation in the summer of 2011. Although this company has not been in SNC since 2006, their penalty for any oil and grease violation was \$4000 per occurrence throughout the 2011 year. The penalty had been escalated

numerous times over the years in accordance with the City's Penalty Escalation Policy. This was a factor in the company's decision to install a DAF pretreatment system.

There are no significant users on compliance schedules that are in writing but are not considered "formal".

19 significant users were assessed penalties in 2011. Penalties were collected from 17 of the users in 2011. The number of users paying penalties in 2011 does not correspond to those receiving penalties as a result of the third and fourth quarter 2010 penalties that were issued and paid in 2011. Some industries had violations for 2010 but not in 2011. Penalties are included in the quarterly industrial waste surcharge bills. Conversely, the City received payments in 2011 for violations occurring and assessed in 2010. Of the 19 SIUs receiving a penalty, 15 paid in 2011 while the other four assessed penalties near the end of 2011 did pay their fines in 2012. Two users with late 2010 violations paid their fines in early 2011. A report on the penalty payment status for violations occurring during 2011 is included in **Appendix 7**. Please note that Crescent Brass appears periodically throughout the report. They are required to pay \$265.05 monthly for prior years' delinquent fines as a settlement in their bankruptcy. These payments are processed by the Law Department and postings often include multiple months.

There are some minor payment discrepancies requiring additional research with the Administrative Services Department. Public Works staff has discovered errors with the posting of prior penalties' payments within the software system as well as subsequent corrections not reflected in the reports. Research in this system shows that the corrections appear in some individual customer queries but not in the summary reports pulled for routine use such as the requisite reporting. This system's data is also transferred to the City's accounting system so the error correction process is critical. The City is working interdepartmentally to resolve this issue for the past and determine how to make corrections be reflected in both the accounting and tracking systems with accurate tracking and reporting in all systems as the goal. Crescent Brass as discussed above is one industry known to have an issue with the software report discrepancy described.

Part B - Pretreatment Developments

I – Summary of POTW Operations

Over the past year, the City has not experienced process upsets, NPDES permit violations, pass-through events or interferences that could be attributed to industrial waste. Additionally, the City did not have problems in the collection system that could be attributed to industrial waste.

The ongoing improvements in management, operations and maintenance (MOM) practices during the year continue to make the pump stations and wastewater treatment plant (WWTP) more effective, efficient and reliable.

The City is required to perform priority pollutant testing annually. The priority pollutant sampling along with the quarterly local limits testing was conducted on the following dates: 8/18-19/11 for the influent, 8/23-24/11 for the effluent and 7/5/11 for the biosolids. The results of these analyses are included in **Appendix 8**. The Form 43 biosolids sampling was conducted on 3/4/11 and 8/2/11. The City is required to perform local limits testing on the influent, effluent, and biosolids on a quarterly basis per the City's NPDES permit. Four tests were performed for the influent and effluent as reported in the in the Monitoring Data Spreadsheet. Weekly mercury testing is performed on plant influent points and the plant effluent. The results of these analyses are included in **Appendix 8**. Priority pollutant testing, quarterly local limits testing and mercury testing is also performed at two of the major influent points for the plant prior to the commingling of all wastewater at what is designated as the plant influent. These two major influent points are designated as 6th and Canal (6th) and the Grit Chamber (Grit). Results for these two major influent points are included in **Appendix 8** and also in the Monitoring Data Spreadsheet.

For biosolids, monthly 503 analyses were performed in 2011. Monthly fecal coliform testing on biosolids was performed in the City's laboratory and the results are summarized in a table. These are included in **Appendix 8.**

Influent, effluent and biosolids data from the quarterly testing and priority pollutants testing and biosolids data from the Form 43 and 503 analyses are summarized in the Monitoring Data Spreadsheet received by e-mail from the EPA. These are included in **Appendix 8.** The monthly average for BOD, TSS, NH₃-N, TKN and Phosphorus for the plant influent was added to the Monitoring Data Spreadsheet. Data from the two major influent points of the plant was added to the Monitoring Data Spreadsheet as two separate tabs.

Additional testing that the City performed for bis(2-Ethylhexyl)phthalate or semivolatiles on the plant influent points, plant effluent and biosolids is included in **Appendix 8**. This was done on at least a monthly basis.

A spreadsheet is also included showing the results and monthly average of testing performed for TKN, Total Phosphorus and ortho-phosphate on the influent in 2011.

Biosolids testing for the year showed the typical higher level of molybdenum in the three summer months. The City identified cooling tower chemicals as an important source of this metal. All permittees are required to test for molybdenum at least once a year and the City tests for molybdenum as well. The City ensures that permits require testing for this metal in the summer months. No major source of molybdenum has been found at any industrial user. The City has been encouraging the elimination of molybdenum containing cooling tower chemicals among its industrial users, non-industrial users and contributing municipalities. All metals in the biosolids meet land application concentration limits except for molybdenum in the summer months. There were no maintenance activities performed in those months that would potentially explain the reason for the elevated levels. The City continues to landfill all biosolids from the wastewater treatment plant but would like to be able to consider other disposal options in the future.

In a letter from DEP dated August 31, 2004, the effluent limit for mercury was amended. The new limit which is a monthly average is 0.00023 mg/L. A copy of the letter and the discharge limitations showing the amended mercury limit is enclosed. The Monitoring Data Spreadsheet lists 0.00007 mg/L as the effluent goal.

No trucked or hauled wastewater or brine waste is accepted at the plant or within the collection system. In 2006, Dietrich's Milk Products began collecting some of its high strength wastewater as part of its program to comply with its oil and grease limit. This is primarily first flushes during equipment cleanup after milk processing. It is transported by Rodney Loeb Septic Service to the Berks County Wastewater Treatment Plant. In 2008, Clover Farms Dairy also began collecting some of its high strength wastewater to control oil and grease discharges. It is transported by Bailey's Septic Service to the Berks County Wastewater Treatment Plant. Documentation on individual waste streams that are collected for off site disposal (i.e. hazardous waste, used oil, sludges) by industrial users is reviewed during facility inspections.

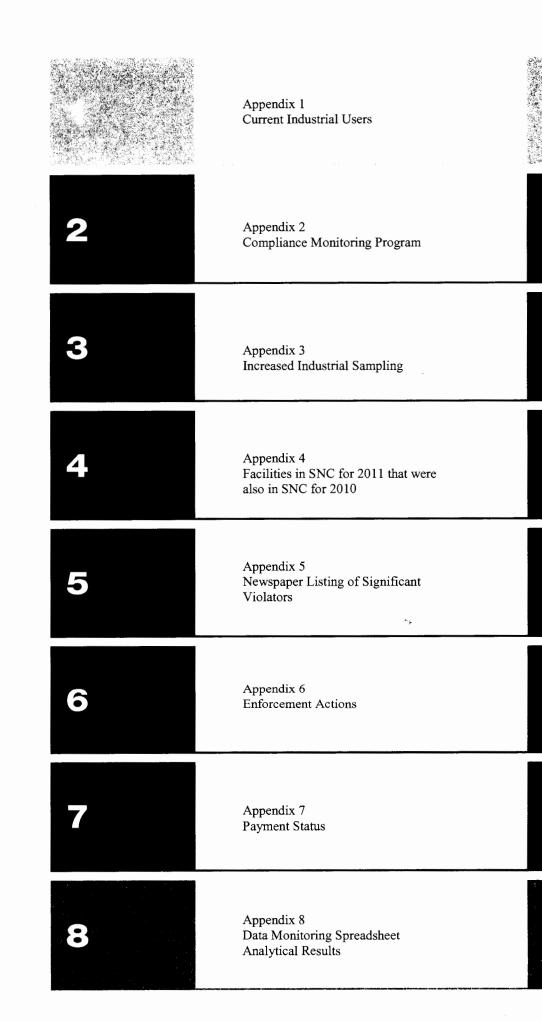
II - Pretreatment Program Changes

During 2011, there were no changes in the legal authority.

The City continues to use both the PreWin commercial software program as well as a custom spreadsheet developed by the Environmental Program Coordinator for tracking compliance. This system of checks and balances ensures that all deadlines, milestones, notices of violation, and significant non-compliance will be accurately reflected and reported.

The WWTP laboratory, which performs conventional analyses for the wastewater treatment plant and industries, received accreditation in January 2008 under Pennsylvania's Chapter 252, Environmental Laboratory Accreditation. The laboratory has maintained its accreditation since that time. A renewal application was submitted in December 2011. Accreditation has been renewed through January 31, 2013. The scope of accreditation is for the following parameters: BOD, cBOD, TS, TSS, TDS, fecal coliform, ammonia as nitrogen and distillation for ammonia as nitrogen.

In 2011, one of the laboratory technicians resigned due to medical reasons. Recruitment was conducted promptly and a replacement was hired. The laboratory is staffed with five laboratory technicians and a laboratory supervisor. One laboratory technician is the primary person performing the industrial sampling. However, the job duties of all of the laboratory technicians include industrial sampling. The other laboratory technicians are cross trained to perform industrial sampling so they are familiar with all of the industrial sites and the sampling points.


III - Miscellaneous Developments

During March 2003, legal counsel for the City was requested by the United States Department of Justice to meet concerning permit violations of the wastewater treatment plant. As a result of this and subsequent meetings, the City of Reading has a Consent Decree with the United Stated Department of Justice, United States Environmental Protection Agency, and Pennsylvania Department of Environmental Protection in order to address past permit violations and to obtain consistent permit compliance for the future. This Consent Decree addresses the wastewater treatment plant, collections system, and industrial pretreatment program. The negotiations for this Consent Decree were completed and the decree executed by all parties in 2004. On December 9, 2004, the US Attorney announced that an agreement had been reached between the parties, and the complaint and decree were lodged with the judge simultaneously. This was subsequently advertised for a thirty-day public comment period which continued into 2005. The Consent Decree was officially signed by the judge and entered on November 7, 2005. This Consent Decree dictates many interim improvements and systems to be implemented while the City embarks on studies of both the WWTP and collection system prior to beginning a capital improvement plan.

For the Consent Decree interim remedial measures, there is the ongoing implementation and refinement of the Environmental Management System, Wet Weather Operations Plan, and the Operations and Maintenance Plan. Additionally, the Plant Influent, Trickling Filter Performance, and Process Control Monitoring are continuing as described in their respective submissions as required.

The long-term remedial measures for the WWTP upgrades, includes the liquid and solid treatment alternatives required by the Consent Decree. Additionally, the collection system has goals to improve mapping, operations, and maintenance through a regimented process leading to system rehabilitation

The City continues to work to improve the wastewater system as a whole and plan for capital improvements. Periodic reports to the regulators and meetings with the regulators document the City's progress and concerns.

2011 Pretreatment Report Appendices

Appendix 1 -	Current Industrial Users
Appendix 2 -	Compliance Monitoring Program
Appendix 3 -	Increased Industrial Sampling
Appendix 4 -	Facilities in SNC for 2011 that were also in SNC for 2010
Appendix 5 -	Newspaper Listing of Significant Violators
Appendix 6 -	Enforcement Actions
Appendix 7 -	Payment Status
Appendix 8 -	Data Monitoring Spreadsheet
• •	Analytical Results
	•

APPENDIX 1 CURRENT INDUSTRIAL USERS

SIGNIFICANT INDUSTRIAL USERS 2011 CATEGORICAL INDUSTRIES (10)

Carpenter Technology Corporation - Iron and Steel

101 West Bern Street

Reading PA 19601

Mailing Address: P O Box 14662

Reading PA 19612-4662

Crescent Brass Manufacturing-Metal Molding & Casting

- Zero Discharge

701 Park Avenue Reading PA 19611 Mailing Address:

Same

Hofmann Industries - Metal Finishing

3145 Shillington Road Sinking Spring PA 19608 Mailing Address:

Same

Reading Plating and Polishing Works - Electroplating

/ 1833 Cotton Street Reading PA 19606 Mailing Address: 1839 Cotton Street Reading PA 19606

Reading Truck Body - Metal Finishing

201 Hanover Blvd. Reading PA 19611 Mailing Address:

Same

Sealed Air Corporation - Pulp and Paper

450 Riverfront Drive Reading PA 19602 Mailing Address:

Same

Summit Steel and Manufacturing - Metal Finishing

1005 Patriot ParkwayReading PA 19605

Mailing Address: P O Box 14295 Reading PA 19612

Termaco USA - Metal Finishing

171 Tuckerton Road Reading PA 19605 Mailing Address:

Same

United Corrstack - Pulp and Paper

720 Laurel Street Reading PA 19602 Mailing Address:

Same

Yuasa Inc - Battery Manufacturing

✓ 2901 Montrose Ave Laureldale PA 19605 Mailing Address:

Same

SIGNIFICANT INDUSTRIAL USERS 2010 NON-CATEGORICAL INDUSTRIES (25)

Akzo Nobel Coatings Mailing Address: 159 Columbia Avenue Same Reading PA 19601 Aramark Uniform Services Mailing Address: 424 Blair Avenue P O Box 15166 Reading PA 19612-5166 Reading PA 19601 The Bachman Company Mailing Address: 51 Spring Valley Road P O Box 15053 Reading PA 19605 Reading PA 19612-5053 Mailing Address: Berks Packing Company 307-323 Bingaman Street P O Box 5919 Reading PA 19602 Reading PA 19610-5919 Cloister Car Wash and Lube Mailing Address: 1 Cloister Court 814 Dawn Avenue Sinking Spring PA 19608 Ephrata PA 17522 Clover Farms Dairy Mailing Address: √ 3300 Pottsville Pike P O Box 14627 Reading PA 19605 Reading PA 19612-4627 Cryovac, Inc. Mailing Address: Food Packaging Division P O Box 295 Reading PA 19603 177 Tuckerton Road Reading PA 19605 Dairy Farmers of America Mailing Address: √ 100 McKinley Avenue Same Reading PA 19605 **Evergreen Community Power** Mailing Address: 800 South Street Same

Reading PA 19602

Exide Technologies
Plant One
Spring Valley Road & Nolan Street
Laureldale PA 19605
Plant Two
Spring Valley Road & Montrose Avenue
Laureldale PA 19605
Reading Recycling
Spring Valley Road & Nolan Street
Reading PA 19605

IFS Industries Inc. 400 Orrton Avenue Reading PA 19611

Interstate Container LLC. 100 Grace Street Reading PA 19611

Lentz Milling 2045 N 11th Street Reading PA 19604

> National/Yorgey's Cleaners 1700 Fairview Street Reading PA 19606

Orograin Bakeries 640 Park Avenue Reading PA 19611

Packaging Corporation of America 171 Tuckerton Road Reading PA 19605

Prizer Painter Stove Works 600 Arlington Street Reading PA 19611

Quadrant EPP USA, Inc. 2120 Fairmont Avenue Reading PA 19605

Quaker Maid Meats 520 & 521 Carroll Street 650 Morgantown Road Reading PA 19611 Mailing Address: P O Box 14294 Reading PA 19612-4294 Mailing Address: P O Box 14294 Reading PA 19612-4294 Mailing Address: P O Box 14294 Reading PA 19612-4294

Mailing Address: P O Box 1053 Reading PA 19603

Mailing Address: Same

Mailing Address: P O Box 13159 Reading PA 19612

Mailing Address: Same

Mailing Address: Same

Mailing Address: Same

Mailing Address: P O Box 1053 Reading PA 19603

Mailing Address: P O Box 14235 Reading PA 19612-4235

Mailing Address: P O Box 350 Shillington PA 19607-0350 Reading Eagle 345 Penn Street Reading PA 19601

Reitech Corporation 3146 Marion Street Laureldale PA 19605

St Joseph Medical Center-Downtown 145 N 6th Street Reading PA 19601

Sun Rich Fresh Foods 425 Gateway Drive Reading PA 19601

Sweet Street Desserts
722 Hiester's Lane
Reading PA 19605

Tom Sturgis Pretzels

2267 Lancaster Pike
Reading PA 19607

Mailing Address: P O Box 582 Reading PA 19603

Mailing Address: Same

Mailing Address: P O Box 316 Reading PA 19603

Mailing Address: Same

Mailing Address: P O Box 15127 Reading PA 19612-5127

Mailing Address: Same

2010 NON-SIGNIFICANT INDUSTRIES (14)

Air Liquide 2500 N 11th Street

Reading PA 19605

Diesel Service, Inc. 150 Lehigh Street Reading PA 19601

NGK Metals Corporation 150 Tuckerton Road Temple PA 19560

Paragon Optical 644-658 S 7th Street Reading PA 19602

Pennsylvania Truck Centers 4226 Pottsville Pike Reading PA 19605

Penske Truck Leasing 255 Penske Plaza Reading PA 19602

Remcon Plastics 208 Chestnut Street Reading PA 19602

Rohm & Haas Chemicals LLC-R&D Lab

3 Commerce Drive Reading PA 19607

Ultra Wash of Philadelphia 1619 N 9th Street

Reading PA 19604

Unique Pretzel Bakery 215 E. Bellevue Avenue Reading PA 19605

Van Bennett Food Company 101 N Carroll Street Reading PA 19611 Mailing Address: P O Box 13577

Reading PA 19612-3577

Mailing Address: P O Box 14325

Reading PA 19612-4325

Mailing Address:

917 US Highway 11 South Sweetwater TN 37874

Mailing Address: 658 S 7th Street Reading PA 19602

Mailing Address: P O Box 13337

Reading PA 19612-3337

Mailing Address: P O Box 7635

Reading PA 19603-7635

Mailing Address:

Same

Mailing Address:

Same

Mailing Address: P O Box 1130

North Cape May NJ 08204

Mailing Address:

Same

Mailing Address:

Same

WORLD electronics 3000 Kutztown Road Reading PA 19605 Mailing Address: Same

APPENDIX 2 COMPLIANCE MONITORING PROGRAM

2011 COMPLIANCE MONITORING PROGRAM

Significant Industrial Users

	Control	Document	Inspection and Sampling Frequency						
Industry Name	Control	Document	Inspe	ctions	Sampling Visits			onitoring	
	Issuance Date	Expiration Date	Performed	Proposed	Performed	Proposed	Performed	Required	
Akzo Nobel Coatings	June 1, 2010	March 31, 2012	1	1	12	12	12	12	
Aramark Uniform Services	July 1, 2010	June 30, 2013	1	1	4	4	12	12	
The Bachman Company	January 1, 2012	December 31, 2014	1	1	4	4	4	4	
Berks Packing Company	January 1, 2010	December 31, 2012	1	1	4	4	12	12	
Carpenter Technology	October 1, 2009	September 30, 2012	1	1	4	4	4	4	
Cloister Car Wash and Lube	July 1, 2009	June 30, 2012	1	1	4	4	4	4	
Clover Farms Dairy	October 1, 2009	September 30, 2012	1	1	12	12	12	12	
Crescent Brass Manufacturing	October 1, 2011	September 30, 2014	1	1	3	1	2	2	
Cryovac Food Packaging Division	April 1, 2010	March 31, 2013	1	1	2	2	2	2	
Dairy Farmers of America	April 1, 2011	March 31, 2014	1	1	13	12	12	12	
Evergreen Community Power	October 1, 2011	September 30, 2014	1	1	4	4	2	2	
Exide Technologies - Plant One	January 1, 2009	December 31, 2011	1	1	0	0	4	4	
Plant Two	January 1, 2009	December 31, 2011	1	1	5	4	2	2	
Reading Recycling	January 1, 2009	December 31, 2011	1	1	3	4	3	4	
Hofmann Industries	April 1, 2009	March 31, 2012	1	1	2	2	18	4	
IFS Industries (International Foundry Supply)	October 1, 2011	September 30, 2014	1	1	12	12	13	12	
Interstate Container	October 1, 2010	September 30, 2013	1	1	4	4	4	4	
Lentz Milling	July 1, 2010	June 30, 2013	1	1	2	2	4	4	
National/Yorgey's Cleaners	January 1, 2012	December 31, 2014	1	1	5	4	2	2	
Orograin Bakeries	July 1, 2011	June 30, 2014	1	1	5	4	2	2	
Packaging Corpporation of America	May 1, 2011	March 31, 2014	1	1	1	1	0	0	
Prizer Painter Stove Works	July 1, 2011	June 30, 2014	1	1	4	4	4	4	
Quadrant EEP USA	April 1, 2009	March 31, 2012	1	1	1	1	2	2	
Quaker Maid Meats	October 1, 2009	September 30, 2012	1	1	4	4	4	4	
Reading Eagle Company	January 1, 2012	December 31, 2014	1	1	2	2	2	2	
Reading Plating & Polishing Works	July 1, 2011	June 30, 2014	1	1	4	4	4	4	
Reading Truck Body	October 1, 2010	September 30, 2013	1	1	4	4	12	12	
Reitech Corporation	October 1, 2010	September 30, 2013	1	1	2	2	2	2	
Sealed Air Corporation	January 1, 2010	December 31, 2012	1	1	16	12	50	52	
St Joseph Medical Center Downtown	April 1, 2010	March 31, 2013	1	1	5	4	13	12	
Summit Steel and Manufacturing	October 1, 2009	September 30, 2012	1	1	2	_ 2	2	2	

DE |CFM |9111

study

thouse 4

2011 COMPLIANCE MONITORING PROGRAM

Significant Industrial Users

		Control	Document	Inspection and Sampling Frequency					
	Industry Name	Control	Document	Inspections		Sampling Visits		Self-Monitoring	
		Issuance Date	Expiration Date	Performed	Proposed	Performed	Proposed	Performed	Required
_	Sun Rich Fresh Foods	January 1, 2011	December 31, 2013	1	1	13	12	12	12
and the same of	Sweet Street Desserts	April 1, 2009	March 31, 2012	1	1	6	4	4	4
1	Termaco USA	July 1, 2011	June 30, 2014	1	1	4	2	4	4
~	Tom Sturgis Pretzels	January 1, 2012	December 31, 2014	1	1	4	4	4	4
_/	United Corrstack	October 1, 2010	September 30, 2013	1	1	14	12	12	12
1	Yuasa Battery	April 1, 2009	March 31, 2012	1	1	4	4	5	4
			Total	37	37	194	177	266	252

NOTES:

Dairy Farmers of America: The new permit for Dietrich's Milk Products, effective April 1, 2011, was issued to Dairy Farmers of America. This was due to a change in the owner and operator of the company. There was no change in operations or authorized representatives.

Orograin Bakeries: The new permit for Orograin Manufacturing Bakeries, effective July 1, 2011, was issued to Orograin Bakeries. There was no change in ownership. The current owners abbreviated the name. There was no change in operations or authorized representatives.

Prizer Painter Stove Works: The new permit for Prizer Works, effective July 1, 2011 was issued to Prizer Painter Stove Works. This does not represent a change in ownership. It was a corporate decision by the current owners. There was no change in operations or authorized representatives.

2011 COMPLIANCE MONITORING PROGRAM

Non-Significant Industrial Users

	Control	Document	Inspection and Sampling Frequency					
Industry Name			Inspe	ctions	Samplin	g Visits	Self-Mo	nitoring
	Issuance Date	Expiration Date	Performed	Proposed	Performed	Proposed	Performed	Required
Air Liquide	July 1, 2009	June 30, 2012	0	0	1	1	2	2
Diesel Service	October 1, 2011	September 30, 2014	0	0	4	4	2	2
NGK Metals Corporation	April 1, 2009	March 31, 2012	0	0	4	4	2	2
Paragon Optical	January 1, 2010	December 31, 2012	0	0	4	4	2	2
Pennsylvania Truck Centers	October 1, 2011	September 30, 2014	0	0	4	4	2	2
Penske Truck Leasing	January 1, 2012	December 31, 2014	0	0	4	4	4	4
Remcon Plastics	April 1, 2011	March 31, 2014	0	0	1	1	1	1
Rohm & Haas Chemicals LLC - R&D Lab	July 1, 2009	June 30, 2012	0	0	1	1	1	1
Ultra Wash of Philadelphia	April 1, 2010	March 31, 2013	0	0	0	0	4	4
Unique Pretzel Bakery	October 1, 2009	September 30, 2012	0	0	2	2	2	2
Van Bennett Food Company	October 1, 2009	September 30, 2012	0	0	3	2	4	4
WORLD electronics	January 1, 2011	December 31, 2013	0	0	2	2	2	2
		Total	0	0	30	29	28	28

NOTES:

APPENDIX 3 INCREASED INDUSTRIAL SAMPLING

INCREASED INDUSTRIAL SAMPLING FOR 2011

INDUSTRY (SIU)	Additional City Sampling Performed	Parameters Tested	Number of Extra Tests	Additional Self Monitoring Sampling Performed	Parameters Tested	Number of Extra Tests
Akzo Nobel Coatings						
Aramark Uniform Services						
The Bachman Company						
Berks Packing Company						
Carpenter Technology						
Cloister Car Wash and Lube						
Clover Farms Dairy		oil and grease	4			
Crescent Brass Manufacturing	2	As,Cd,Cr,Cu,Pb,Hg,Ni,Ag	2			
		Zn, pH,cyanide, phenols	2		· <u>• • • • • • • • • • • • • • • • • • •</u>	
		oil/grease (HEM,SGT-HEM)	2			
Cryovac Food Packaging Division						
Dairy Farmers of America		oil and grease	1			
Evergreen Community Power						
Exide - Plant One						
- Plant Two						
- Reading Recycling				1112111	copper	1
					zinc	2
Hofmann Industries				14	chromium, zinc	14
IFS Industries						
Interstate Container						
Lentz Milling						
National/Yorgey's Cleaners	1	oil/grease (HEM,SGT-HEM)	1			
Orograin Bakeries outfall 001	1	oil and grease	1			
Packaging Corp. of America						
Prizer Painter Stove Works						
Quadrant EPP USA						
Quaker Maid Meats outfall 003						
outfall 004						
Reading Eagle Company						
Reading Plating & Polishing Works						
Reading Truck Body						
Reitech Corporation						
Sealed Air Corporation						

INCREASED INDUSTRIAL SAMPLING FOR 2011

INDUSTRY (SIU)	Additional City Sampling Performed	Parameters Tested	Number of Extra Tests	Additional Self Monitoring Sampling Performed	Parameters Tested	Number of Extra Tests
St Joseph Downtown-outfall 006	1	mercury	1	1	mercury	1
Summit Steel and Manufacturing						
Sun Rich Fresh Foods						
Sweet Street Desserts	1	oil and grease, pH	1			
Termaco USA	2	phenols	2			
Tom Sturgis Pretzels						
United Corrstack					oil/grease (HEM,SGT-HEM)	_ 8
Yuasa Battery				1	lead, outfall 001	1

NOTES:

The Bachman Company

The SOP for City testing was changed, effective the second quarter of 2012, to increase testing for mercury from annually to quarterly. Although there have been no violations since the 3rd quarter of 2007, more frequent testing will ensure continued compliance.

Packaging Corp. of America

A 35 month permit, effective May 1, 2011, was issued to this new company. Quarterly testing for free cyanide was included in the testing requirements in the permit since no data is available for this parameter. The SOP for City testing also includes quarterly testing for free cyanide.

Orograin Bakeries

A three year permit, effective July 1, 2011, was issued. The permit continues the requirement for two resamples after a violation for any permit parameter.

Reading Eagle Company

The SOP for City testing was changed, effective the first quarter of 2012, to increase testing for copper from annually to semiannually. There have been no violations at the new sampling point. In 2009, the company completed a building expansion and installation of a new press changing the nature of its discharge. The discharge now presents less of a concern with compliance. However, an increase in testing at the new sampling point will provide more data to ensure compliance.

Reading Plating & Polishing

A three year permit, effective July 1, 2011, was issued. Quarterly testing for free cyanide was added to the testing requirements in this permit. The SOP for City testing was changed, effective the fourth quarter of 2011, to add testing for free cyanide on a quarterly basis.

Termaco USA

A three year permit, effective July 1, 2011, was issued. TTO certification was allowed is lieu of testing. Testing for VOC was changed from twice to once a year. The SOP for City testing was changed to require that one of the two annual testings is done when the rinse tanks are discharged. This is done on a weekly basis.

INCREASED INDUSTRIAL SAMPLING FOR 2011

INDUSTRY (non-SIU)	Additional City Sampling Performed	Parameters Tested	Number of Extra Tests	Additional Self Monitoring Sampling Performed	Parameters Tested	Number of Extra Tests
Air Liquide						
Diesel Service						
Getty Petroleum Marketing						
NGK Metals Corporation						
Paragon Optical						
Pennsylvania Truck Centers						
Penske Truck Leasing						
Perception						
Remcon Plastics						
Rohm and Haas - R&D Lab						
Ultra Wash of Philadelphia						
Unique Pretzel Bakery				1.5-11.		
Van Bennett Food Company	1	oil and grease	1			
WORLD electronics						

NOTES:

APPENDIX 4

FACILITIES IN SNC FOR 2011 THAT WERE ALSO IN SNC FOR 2010

Significant Industrial Users in SNC for 2011 that were also in SNC for 2010

Facility	Reason for Significant Non-Compliance 2010	<u>2011</u>	Status at the end of 2011
Cloister Car Wash & Lube	TRC: zinc	TRC & chronic: zinc Failure to Report	Compliance Compliance
Clover Farms Dairy	TRC & chronic: oil & grease (HEM)	TRC: oil and grease (HEM)	Compliance
Exide Technologies- Reading Recycling	TRC & chronic: copper TRC: zinc	TRC & chronic: copper TRC & chronic: zinc TRC: lead	SNC SNC Compliance
National/Yorgey's Cleaners	Failure to Resample	TRC: oil and grease (HEM) TRC: oil and grease (SGT-HEM)	Compliance Compliance
Orograin Bakeries	Failure to Resample TRC: zinc	TRC: oil and grease (HEM)	Compliance
Termaco USA	TRC & chronic: phenols	Failure to Report	Compliance

Non Significant Industrial Users in SNC for 2011 that were also in SNC for 2010

Facility	Reason for Significant Non-Compliance 2010	<u>2011</u>	Status at the end of 2011
Paragon Optical Company	TRC & chronic: copper TRC: lead	TRC & chronic: copper Failure to Resample	SNC SNC
Unique Pretzel Bakery	TRC & chronic: zinc	TRC: chromium	Compliance

APPENDIX 5 NEWSPAPER LISTING OF SIGNIFICANT VIOLATORS

Proof of Publication of Notice in Reading Eagle

Under Act No. 587, Approved May 16,1929.

Commonwealth of Pennsylvania, County of Berks

ss:

Lynn Schittler, Assistant Secretary, READING EAGLE COMPANY, of the County and Commonwealth aforesaid, being duly sworn, deposes and says that the READING EAGLE established January 28, 1868 is a newspaper of general circulation published at 345 Penn Street, City of Reading. County and State aforesaid, and that the printed notice or publication attached hereto is exactly the same as printed and published in the regular edition and issues of the said READING EAGLE on the following dates, viz.:

Reading Eagle

Sunday, March 18, 2012, A.D.

Effective July 1, 2002 Reading Times Ceased Publication. The Reading Eagle will be a daily morning and Sunday edition.

Affiant further deposes that this person is duly authorized by READING EAGLE COMPANY, a corporation, publisher of said READING EAGLE, a newspaper of general circulation, to verify the foregoing statement under oath, and affiant is not interested in the subject matter of the aforesaid notice or advertisement, and that all allegations in the foregoing statements as to time, place, character of publication are true.

Copy of Notice of Publication

Dyn Zuttles
Lynn Schittler

Sworn to and subscribed before me this 19th day of March, 2012

Theresa M. Sassaman

Notary

Statement of Advertising Costs

INDUSTRIAL PRETREATMENT

CITY OF READING ACCOUNTS PAYABLE, ROOM 201A 815 WASHINGTON ST. READING, PA 19601 COMMONWEALTH OF PENNSYLVANIA

NOTARIAL SEAL
THERESA M. SASSAMAN, NOTARY PUBLIC
CITY OF READING, BERKS COUNTY
MY COMMISSION EXPIRES OCT. 23, 2014

To READING EAGLE, DR.:

For publishing the notice of publication attached hereto on the above stated dates

\$1,205.40

Probating same

\$5.00

Total

\$1,210.40

PUBLIC NOTICE

As a requirement of the City of Reading's National Pollutant Discharge Elimination System (NPDES) Permit number PA0026649, the City is required to operate an industrial pretreatment program in accordance with the Clean Water Act and the General Pretreatment Regulations (40 CFR 403).

Part 40 CRR 403.8 (f) (2) (vtll) of the General Regulations as well as Section 9 of the City of Reading's Sewer Use Ordinance 17-98, requires annual publication of a list of all inclustrial users which were in significant non-compliance (SNC) at any time during the previous twelve (12) months.

The list of significant industrial users found to be in significant non-compliance during the previous twelve months starting January 1, 2011 to December 31, 2011 along with their current compliance status is as follows:

Cloister Car Wash and Lube

1 Cloister Court

Sinking Spring PA 19608

City of Reading Industrial Waste Permit No. 80A

Nature of violations:

1st Quarter - TRC and chronic violation of the zinc limit listed in its permit

2nd Quarter - TRC violation of the zinc limit listed in its permit

3rd Quarter - Fallure to Report

Current comptiance status: Current compliance status:
In 2010, the company segregated the zinc containing portion of the waste stream to that it can be pretreeted prior to discharge. After the violations in the first quarter, the company increased the schedule for pumping out its estilling tanks and began to investigate upgrading the zinc pretreatment method, if necessary. SNC for the second quarter is based on the violations that occurred in the first quarter. The company has returned to compliance. The self-monitoring report submitted for the third quarter was incomplete. Some of the required testing was not done. The missing tests were performed, submitted to the City and were in compliance.

Clover Farms Dairy 3300 Pettsville Pike Reading PA 19605

City of Reading Industrial Waste Permit No. 47H

Nature of violation:

2nd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit

Current compliance status:

Current compliance status:

The company had a Consent Agreement with the City of Reading that was signed on December 29, 2006 and terminated on July 31, 2008. The agreement was for the construction of a system to achieve compliance with the oil and grease and pH limits in its permit. The system that was installed did not result in compliance. In 2009 the company began plant for a new petreatment system while it continued to work on changes to the existing system to achieve compliance. In 2011 the company intitated changes to the existing system that did result in compliance. The compeny is now working on plans to automate these changes and to add a system for pH compliance.

Exide Technologies -- Reading Recycling

Spring Valley Road and Nolan Street Reading PA 19605

City of Reading Industrial Waste Permit No. 34G

Nature of violations:

3rd Quarter - TRC violation of the copper limit listed in its

3rd Quarter - TRC violation of the zinc limit listed in its permit 4th Quarter - TRC violation of the lead limit listed in its permit 4th Quarter - TRC and chronic violation of the copper limit listed in its permit

4th Quarter - TRC and chronic violation of the zinc limit listed in its permit

Current compliance status:

Current compliance status:

The discharge to the sampling point was senitary, not industrial. SNC in the third quarter is based on one violation in three sampling events for copper and zinc. After these violations occurred, the company removed all known bathroom fixtures to eliminate any discharge to the sampling point. SNC for the fourth quarter is based on the violations that cocurred in the third quarter. The company could not return to compliance. Sampling could not be done in the fourth quarter because there was no discharge to the sampling point. This sampling point will be evaluated for a zero discharge permit.

Hofmann Industries, Inc. 3145 Shillington Road

Sinking Spring PA 19608 City of Reading Industrial Waste Permit No. 18G

Nature of violation:

1st Quarter - Chronic violation of the maximum monthly average limit for zinc listed in its permit

Current compliance status:

Current compliance status:
This is a categorical industrial user and therefore has a maximum monthly average limit for a number of parameters including zinc. There is a pretreatment system in operation. The cause of the violation on the day that caused the monthly average violation could not be determined. The company performed six additional voluntary tests later in the month and each result was below the monthly average limit for zinc. The company returned to compliance and had no other violations for the rest of the year.

National/Yorgey's Cleaners

1700 Fairview Street

Reading PA 19606 City of Reading Industrial Waste Permit No. 6G

Nature of violations:

3rd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Quarter - TRC violation of the oil and grease (SGT-HEM) limit fisted in its permit

Current compliance status:

SNC is based on one violation each for HEM and SGT-HEM in the two tests conducted. Both violations occurred during the same sampling event. The cause of the violations is unknown. The company has returned to compliance.

Orograin Manufacturing Bakeries.

640 Park Avenu

Reading PA 19611

City of Reading Industrial Waste Permit No. 16H

Nature of violation:

3rd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit at outfall 001

Current compliance status:

SNC is the result of one violation in three tests conducted. The company identified the probable cause of the violation, took corrective action and returned to compliance.

St Joseph Medical Center Downton

145 N. 6th Street

Reading PA 10601

City of Reading Industrial Waste Permit No. 65F

Nature of violations:

2nd Quarter - TRC and chronic violation of the mercury limit listed in its permit at outfall 006

3rd Quarter - TRC and chronic violation of the mercury limit listed in its permit at outfall 006

4th Quarter - TRC violation of the mercury limit listed in its permit at outfall 006

4th Quarter - Failure to Resample

Current compliance status:

The violations for mercury are attributed to problems with the pumps at the lift station where sampling is done. The pumps were replaced and the company returned to compliance in testings that were conducted in the fourth quarter. The City's limit for mercury discharge is extremely low.

The company falled to resemple and report within 30 days following a mercury violation on a test that the company violation on a test that the company violation conducted and was in compilance.

Termaco HSA Inc.

171 Tuckerton Road

Reading PA 10605

City of Reading Industrial Waste Permit No. 83A

Nature of violation:

3rd Quarter - Fallure to Report

Current compliance status:

The self-monitoring report for the third quarter was not submitted with 30 days after the due date. The report was subsequently submitted to the City and was in compliance.

The list of non-significant industrial users found to be in significant non-compliance during the previous twelve months starting Jenuary 1, 2011 to December 31, 2011 along with their current compliance status le as follows:

Paragon Optical Company Inc.

644-658 South 7th Street Reading PA 19602

City of Reading Industrial Waste Permit No. M020C Nature of violetions:

1st Quarter - TRC violation of the copper limit fisted in its

2nd Quarter - TRC and chronic violation of the copper limit listed in its permit

3rd Quarter - Failure to Resample 4th Quarter - TRC violation of the copper limit listed in its Current compliance status;

The company has been monitoring the discharge and deanouts of the solids retention sump more closely and this has controlled the discharge of metals with the exception of copper. The company did not return to compilance for copper by the The company diet not return to compilance for copper by the end of the year. The City will be meeting with the company to 2012 to seek a resolution to the violations that have occurred. The company falled to resample and report within 30 days following a copper violation. The required resample has not yet been submitted to the City to evaluate compilance.

Unique Pretzei Bakery

215 E. Believue Avenue

Reading PA 19605

City of Reading Industrial Waste Permit No. M029D

2nd Quarter - TRC violation of the chromium limit listed in its

Current compliance status:

SNC is based on one violation in two sampling events conducted in the first half of the year. The company installed an equalization tank for more effective sampling and returned to compliance.

Van Bennett Food Company

101 N. Carroll Street

Reading PA 19611 City of Reading Industrial Waste Permit No. M030D

Nature of violations

2nd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit 3rd Quarter - TRC violation of the oil and grease (HEM) limit

listed in its permit Current compliance status

The exact cause of the violations is unknown but the company has reviewed procedures with its employees to control its cili and grease discharge. The company has returned to compliance.

if any edditional information is required, please contact Deborah A.S. Hoag, PE, Utilities Division Manager, or Jacqueline C. Hendricks, Environmental Program Coordinator, at 810-856-

PUBLIC NOTICE

As a requirement of the City of Reading's National Pollutant Discharge Elimination System (NPDES) Permit number PA0026549, the City is required to operate an industrial pretreatment program in accordance with the Clean Water Act and the General Pretreatment Regulations (40 CFR 403).

Part 40 CFR 4038 (72) (2) (viii) of the General Regulations as well as Section 9 of the City of Reading's Sewer Use Ordinance 17-98, requires annual publication of a list of all Industrial users which were in significant non-compliance (SNC) at any time during the previous twelve (12) months.

The list of significant industrial users found to be in significant non-compliance during the previous twelve months starting January 1, 2011 to December 31, 2011 along with their current compliance status is as follows:

Cloister Car Wash and Lube

Sinking Spring PA 19608 City of Reading Industrial Waste Permit No. 80A

Nature of violations:

1st Quarter – TRC and chronic violation of the zinc limit listed in its permit

2nd Quarter - TRC violation of the zinc limit listed in its permit

3rd Quarter – Failure to Report

Current compliance status:

Current compliance status:
In 2010, the company segregated the zinc containing portion of the waste stream so that it can be pretreated prior to discharge. After the violations in the first quarter, the company increased the schedule for pumping out its settling tanks and began to investigate upgrading the zinc pretreatment method, if necessary. SNC for the second quarter is based on the violations that occurred in the first quarter. The company has returned to compliance. The self-monitoring report submitted for the third quarter was incomplete. Some of the required testing was not done. The missing tests were performed, submitted to the City and were in compliance.

Clover Farms Dairy 3300 Pottsville Pike

Reading PA 19605 City of Reading Industrial Waste Permit No. 47H

Nature of violation:

2nd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit

Current compliance status:

Current compliance status:
The company had a Consent Agreement with the City of Reading that was signed on December 29, 2006 and terminated on July 31, 2008. The agreement was for the construction of a system to achieve compliance with the oil and grease and pH. limits in its permit. The system that was installed did not result in compliance. In 2009 the company began plans for a new pretreatment system while it continued to work on changes to the existing system to achieve compliance. In 2011 the company initiated changes to the existing system that did result in compliance. The company is now working on plans to automate these changes and to add a system for pH compliance.

Exide Technologies - Reading Recycling Spring Valley Road and Nolan Street

Reading PA 19605

City of Reading Industrial Waste Permit No. 34G

Nature of violations:

3rd Quarter - TRC violation of the copper limit listed in its permit 3rd Quarter - TRC violation of the zinc limit listed in its permit

4th Quarter - TRC violation of the lead limit listed in its permit 4th Quarter - TRC and chronic violation of the copper limit listed in its permit

4th Quarter - TRC and chronic violation of the zinc limit listed

Current compliance status:

Current compliance status:

The discharge to the sampling point was sanitary, not industrial. SNC in the third quarter is based on one violation in three sampling events for copper and zinc. After these violations occurred, the company removed all, known bathroom fixtures to eliminate any discharge to the sampling point. SNC for the fourth quarter is based on the violations that occurred in the third quarter. The company could not return to compliance. Sampling could not be done in the fourth quarter because there was no discharge to the sampling point. This sampling point will be evaluated for a zero discharge permit.

Hofmann Industries, Inc.

3145 Shillington Road

Sinking Spring PA 19608

City of Reading Industrial Waste Permit No. 18G

Nature of violation:

1st Quarter - Chronic violation of the maximum monthly average limit for zino listed in its permit Current compliance status:

Current compliance status:
This is a categorical industrial user and therefore has a maximum monthly average limit for a number of parameters including zinc. There is a pretreatment system in operation. The cause of the violation on the day that caused the monthly average violation could not be determined. The company performed six additional voluntary tests later in the month and each result was below the monthly average limit for zinc. The company returned to compliance and had no other violations for the rest of the year.

National/Yorgey's Cleaners 1700 Fairview Street

Reading PA 19606

City of Reading Industrial Waste Permit No. 6G

Nature of violations

3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Quarter - TRC violation of the oil and grease (SGT-HEM) limit listed in its permit

Current compliance status:

SNC is based on one violation each for HEM and SGT-HEM in the two tests conducted. Both violations occurred during the same sampling event. The cause of the violations is unknown. The company has returned to compliance.

Orograin Manufacturing Bakeries.

640 Park Avenue

Reading PA 19611

City of Reading Industrial Waste Permit No. 16H

Nature of violation:
3rd Quarter = TRC violation of the oil and grease (HEM) limit listed in its permit at outfall 001

Current compliance status:

SNC is the result of one violation in three tests conducted. The company identified the probable cause of the violation, took corrective action and returned to compliance.

St Joseph Medical Center Downtown

145 N. 6th Street

Reading PA 10601

City of Reading Industrial Waste Permit No. 65F

Nature of violations:

Nature of violations:
2nd Quarter – TRC and chronic violation of the mercury limit listed in its permit at outfall 006
3rd Quarter – TRC and chronic violation of the mercury limit listed in its permit at outfall 006
4th Quarter – TRC violation of the mercury limit listed in its permit at outfall 006
4th Quarter – Fallure to the esample
Current compliance to the

Current compliance status:

Current compliance status:

The violations for mercury are attributed to problems with the pumps at the lift station where sampling is done. The pumps were replaced and the company returned to compliance intestings that were conducted in the fourth quarter. The City's limit for mercury discharge is extremely low.

The company failed to resample and report within 30 days are the total the company.

following a mercury violation on a test that the company voluntarily conducted. The resample was conducted and was in compliance.

Termaco USA, Inc. 🕖

171 Tuckerton Road

Reading PA 10605

City of Reading Industrial Waste Permit No. 83A

Nature of violation:

3rd Quarter - Failure to Report

Current compliance status:

The self-monitoring report for the third quarter was not submitted with 30 days after the due date. The report was subsequently submitted to the City and was in compliance.

The list of non-significant industrial users found to be in significant non-compliance during the previous twelve months starting January 1, 2011 to December 31, 2011 along with their current compliance status is as follows:

Paragon Optical Company Inc. 644-658 South 7th Street

Reading PA 19602

City of Reading Industrial Waste Permit No. M020C

Nature of violations 1st Quarter - TRC violation of the copper limit listed in its

2nd Quarter - TRC and chronic violation of the copper limit listed in its permit

3rd Quarter - Failure to Resample

4th Quarter - TRC violation of the copper limit listed in its

Current compliance status:

Current compliance status:

The company has been monitoring the discharge and cleanouts of the solids retention sump more closely and this has controlled the discharge of metals with the exception of copper. The company did not return to compliance for copper by the end of the year. The City will be meeting with the company in 2012 to seek a resolution to the violations that have occurred. The company failed to resample and report within 30 days following a copper violation. The required resample has not yet been submitted to the City to evaluate compliance.

Unique Pretzel Bakery

215 E. Bellevue Avenue Reading PA 19605

City of Reading Industrial Waste Permit No. M029D

Nature of violation: 2nd Quarter - TRC violation of the chromium limit listed in its

Current compliance status:

SNC is based on one violation in two sampling events conducted in the first half of the year. The company installed an equalization tank for more effective sampling and returned to compliance.

Van Bennett Food Company

101 N. Carroll Stre Reading PA 19611

City of Reading Industrial Waste Permit No. M030D

Nature of violations:

2nd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Quarter - TRC violation of the oil and grease (HEM) limit listed in its permit

Current compliance status

The exact cause of the violations is unknown but the company has reviewed procedures with its employees to control its oil and grease discharge. The company has returned to compliance

If any additional information is required, please contact Deborah A.S. Hoag, PE, Utilities Division Manager, or Jacqueline C. Hendricks, Environmental Program Coordinator, at 610-655-6121.

PUBLIC NOTICE

As a requirement of the City of Reading's National Pollutant Discharge Elimination System (NPDES) Permit number PA0026549, the City is required to operate an industrial pretreatment program in accordance with the Clean Water Act and the General Pretreatment Regulations (40 CFR 403).

Part 40 CFR 403.8 (f) (2) (viii) of the General Regulations as well as Section 9 of the City of Reading's Sewer Use Ordinance 17-98, requires annual publication of a list of all industrial users which were in significant non-compliance (SNC) at any time during the previous twelve (12) months.

The list of significant industrial users found to be in significant non-compliance during the previous twelve months starting January 1, 2011 to December 31, 2011 along with their current compliance status is as follows:

Cloister Car Wash and Lube 1 Cloister Court

Sinking Spring PA 19608

City of Reading Industrial Waste Permit No. 80A

Nature of violations:

 1^{st} Quarter – TRC and chronic violation of the zinc limit listed in its permit 2^{nd} Quarter – TRC violation of the zinc limit listed in its permit

3rd Ouarter – Failure to Report

Current compliance status:

In 2010, the company segregated the zinc containing portion of the waste stream so that it can be pretreated prior to discharge. After the violations in the first quarter, the company increased the schedule for pumping out its settling tanks and began to investigate upgrading the zinc pretreatment method, if necessary. SNC for the second quarter is based on the violations that occurred in the first quarter. The company has returned to compliance. The self-monitoring report submitted for the third quarter was incomplete. Some of the required testing was not done. The missing tests were performed, submitted to the City and were in compliance.

Clover Farms Dairy 3300 Pottsville Pike Reading PA 19605

City of Reading Industrial Waste Permit No. 47H

Nature of violation:

2nd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit Current compliance status:

The company had a Consent Agreement with the City of Reading that was signed on December 29, 2006 and terminated on July 31, 2008. The agreement was for the construction of a system to achieve compliance with the oil and grease and pH limits in its permit. The system that was installed did not result in compliance. In 2009 the company began plans for a new pretreatment system while it continued to work on changes to the existing system to achieve compliance. In 2011 the company initiated changes to the existing system that did result in compliance. The company is now working on plans to make these changes permanent and to add a system for pH compliance.

Exide Technologies - Reading Recycling Spring Valley Road and Nolan Street Reading PA 19605 City of Reading Industrial Waste Permit No. 34G Nature of violations:

3rd Quarter – TRC violation of the copper limit listed in its permit

3rd Quarter – TRC violation of the zinc limit listed in its permit

4th Quarter – TRC violation of the lead limit listed in its permit

4th Quarter – TRC and chronic violation of the copper limit listed in its permit

4th Quarter – TRC and chronic violation of the zinc limit listed in its permit

Current compliance status:

The discharge to the sampling point was sanitary, not industrial. SNC in the third quarter is based on one violation in three sampling events for copper and zinc. After these violations occurred, the company removed all known bathroom fixtures to eliminate any discharge to the sampling point. SNC for the fourth quarter is based on the violations that occurred in the third quarter. The company could not return to compliance. Sampling could not be done in the fourth quarter because there was no discharge to the sampling point.

Hofmann Industries, Inc.

3145 Shillington Road

Sinking Spring PA 19608

City of Reading Industrial Waste Permit No. 18G

Nature of violation:

1st Quarter – Chronic violation of the maximum monthly average limit for zinc listed in its permit Current compliance status:

This is a categorical industrial user and therefore has a maximum monthly average limit for a number of parameters including zinc. There is a pretreatment system in operation. The cause of the violation on the day that caused the monthly average violation could not be determined. The company performed six additional voluntary tests later in the month and each result was below the monthly average limit for zinc. The company returned to compliance and had no other violations for the rest of the year.

National/Yorgey's Cleaners

1700 Fairview Street

Reading PA 19606

City of Reading Industrial Waste Permit No. 6G

Nature of violations:

3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit

3rd Quarter – TRC violation of the oil and grease (SGT-HEM) limit listed in its permit

Current compliance status:

SNC is based on one violation each for HEM and SGT-HEM in the two tests conducted. Both violations occurred during the same sampling event. The cause of the violations is unknown. The company has returned to compliance.

Orograin Manufacturing Bakeries.

640 Park Avenue

Reading PA 19611

City of Reading Industrial Waste Permit No. 16H

Nature of violation:

3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit at outfall 001 Current compliance status:

SNC is the result of one violation in three tests conducted. The company identified the probable cause of the violation, took corrective action and returned to compliance.

St Joseph Medical Center Downtown 145 N. 6th Street

Reading PA 10601

City of Reading Industrial Waste Permit No. 65F

Nature of violations:

2nd Quarter – TRC and chronic violation of the mercury limit listed in its permit at outfall 006

3rd Quarter – TRC and chronic violation of the mercury limit listed in its permit at outfall 006

4th Quarter – TRC violation of the mercury limit listed in its permit at outfall 006

4th Quarter – Failure to Resample

Current compliance status:

The violations for mercury are attributed to problems with the pumps at the lift station where sampling is done. The pumps were replaced and the company returned to compliance in testings that were conducted in the fourth quarter. The City's limit for mercury discharge is extremely low.

The company failed to resample and report within 30 days following a mercury violation on a test that the company voluntarily conducted. The resample was conducted and was in compliance.

Termaco USA, Inc.

171 Tuckerton Road

Reading PA 10605

City of Reading Industrial Waste Permit No. 83A

Nature of violation:

3rd Quarter – Failure to Report

Current compliance status:

The self-monitoring report for the third quarter was not submitted with 30 days after the due date. The report was subsequently submitted to the City and was in compliance.

The list of non-significant industrial users found to be in significant non-compliance during the previous twelve months starting January 1, 2011 to December 31, 2011 along with their current compliance status is as follows:

Paragon Optical Company Inc.

644-658 South 7th Street

Reading PA 19602

City of Reading Industrial Waste Permit No. M020C

Nature of violations:

1st Quarter - TRC violation of the copper limit listed in its permit

2nd Quarter – TRC and chronic violation of the copper limit listed in its permit

3rd Quarter – Failure to Resample

4th Quarter – TRC violation of the copper limit listed in its permit

Current compliance status:

The company has been monitoring the discharge and cleanouts of the solids retention sump more closely and this has controlled the discharge of metals with the exception of copper. The company did not return to compliance for copper by the end of the year. The City will be meeting with the company in 2012 to seek a resolution to the violations that have occurred. The company failed to resample and report within 30 days following a copper violation. The required resample has not yet been submitted to the City.

Unique Pretzel Bakery

215 E. Bellevue Avenue

Reading PA 19605

City of Reading Industrial Waste Permit No. M029D

Nature of violation:

2nd Quarter – TRC violation of the chromium limit listed in its permit

Current compliance status:

SNC is based on one violation in two sampling events conducted in the first half of the year. The company installed an equalization tank for more effective sampling and returned to compliance.

Van Bennett Food Company 101 N. Carroll Street Reading PA 19611 City of Reading Industrial Waste Permit No. M030D Nature of violations:

2nd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit 3rd Quarter – TRC violation of the oil and grease (HEM) limit listed in its permit Current compliance status:

The exact cause of the violations is unknown but the company has reviewed procedures with its employees to control its oil and grease discharge. The company has returned to compliance.

If any additional information is required, please contact Deborah A.S. Hoag, PE, Utilities Division Manager, or Jacqueline C. Hendricks, Environmental Program Coordinator, at 610-655-6121.

APPENDIX 6 ENFORCEMENT ACTIONS

2011 ENFORCEMENT ACTIONS

Significant Industrial Users

	Enforcement Action				
Industry Name	Compliance	Notice of	Admin	Penalty	Nature of Violation
	Schedule	Violation	Order	Assessed	
Akzo Nobel Coatings	None	None	None		
Aramark Uniform Services	None	5	None	\$450	1 oil and grease (HEM), 2 oil and grease (SGT-HEM), 1 pH, 1 late report
The Bachman Company	None	None	None		
Berks Packing Company	None	1	None	\$100	1 pH
Carpenter Technology	None	None	None		
Cloister Car Wash and Lube	None	7	None	\$3,200 *	4 zinc, 2 copper, 1 Failure to Report
Clover Farms Dairy	None	11	None	\$21,400 *	7 oil and grease (HEM), 4 pH
Crescent Brass Manufacturing	None	1	None	\$100	1 copper
Cryovac Food Packaging	None	None	None		
Dairy Farmers of America	None	9	None	\$16,450 *	4 oil and grease (HEM), 4 pH, 1 late report
Evergreen Community Power	None	None	None		
Exide - Plant One	None	None	None		
Plant Two	None	None	None		
Reading Recycling	None	4	None	\$400	1 copper, 1 lead, 1 zinc, 1 oil and grease (HEM)
Hofmann Industries	None	2	None	\$200	1 zinc - maximum monthly average, 1 zinc - daily maximum
IFS Industries	None	5	None	\$14,000 *	5 oil and grease (HEM)
Interstate Container	None	None	None		
Lentz Milling	None	2	None	\$350	1 zinc, 1 late sampling
National/Yorgey's Cleaners	None	3	None	\$300	1 oil and grease (HEM), 1 oil and grease (SGT-HEM), 1 pH
Orograin Bakeries	None	3	None	\$300	2 copper at outfall 001, 1 oil and grease (HEM) at outfall 001
Packaging Corp. of America	None	None	None		
Prizer Painter Stove Works	None	None	None		
Quadrant EEP USA	None	None	None		
Quaker Maid Meats	None	None	None		
Reading Eagle Company	None	None	None		
Reading Plating & Polishing	None	None	None		
Reading Truck Body	None	1	None	\$250	1 late sampling
Reitech Corporation	None	None	None		
Sealed Air Corporation	None	2	None	\$200	1 oil and grease (HEM), 1 oil and grease (SGT-HEM)
St Joseph Downtown	None	4	None	\$800	3 mercury at outfall 006, 1 Failure to Resample
Summit Steel and Manufacturing	None	None	None		
Sun Rich Fresh Foods	None	1	None	\$50	1 late report
Sweet Street Desserts	None	None	None		
Termaco USA	None	1	None	\$1,000	1 Failure to Report

2011 ENFORCEMENT ACTIONS

Significant Industrial Users

		Enforceme	nt Action		
Industry Name	Compliance	Notice of	Admin	Penalty	Nature of Violation
	Schedule	Violation	Order	Assessed	
Tom Sturgis Pretzels	None	2	None	\$150	1 pH, 1 late report
United Corrstack	None	2	None	\$150	1 oil and grease (SGT-HEM), 1 late report
Yuasa Battery	None	None	None		
TOTAL	0	66	0	\$59,850	

Initial fines for violations are as follows:

Failure to Report	\$1,000
Failure to Resample	\$500
Permit Limit violation	\$100
Late report	\$50
Late sampling/resampling	\$250
Failure to Report Violations	\$1,000
Failure to Report Monitoring Data	\$1,000
Failure to maintain pretreatment records/documents on site	\$500

NOTES ON FINES ADMINISTERED:

Cloister Car Wash and Lube: Zinc violations were fined at \$500 per occurrence.

Clover Farms Dairy: Oil and grease violations (HEM) were escalated to \$3000 per occurrence beginning the first quarter. 7 were fined at this rate.

Dietrich's Milk Products: Oil and grease violations (HEM) were fined at \$4000 per occurrence.

IFS: Oil and grease violations (HEM) were fined at \$2500 per occurrence in the first quarter. 2 were fined at this rate. Oil and grease (HEM) violatons were escalated to \$3000 per occurrence beginning the second quarter. 3 were fined at this rate.

2011 ENFORCEMENT ACTIONS

Non-Significant Industrial Users

	I	Enforcemen	t Action		
Industry Name	Compliance	Notice of	Admin	Penalty	Nature of Violation
	Schedule	Violation	Order	Assessed	
Air Liquide	None	None	None		
Diesel Service	None	None	None		
NGK Metals Corporation	None	None	None		
Paragon Optical	None	5	None	\$900	4 copper, 1 Failure to Resample
Pennsylvania Truck Centers	None	None	None		
Penske Truck Leasing	None	1	None	\$100	1 zinc
Remcon Plastics	None	None	None		
Rohm & Haas Chemicals - R&D Lab	None	None	None		
Ultra Wash of Philadelphia	None	None	None		
Unique Pretzel Bakery	None	3	None	\$300	2 chromium, 1 pH
Van Bennett Food Company	None	2	None	\$200	2 oil and grease (HEM)
WORLD electronics	None	None	None		
TOTAL	0	11	0	\$1,500	

Initial fines for violations are as follows:

Failure to Report	\$1,000
Failure to Resample	\$500
Permit Limit violation	\$100
Late report	\$50
Late sampling/resampling	\$250
Failure to Report Violations	\$1,000
Failure to Report Monitoring Data	\$1,000

APPENDIX 7 PAYMENT STATUS

City of Reading Industrial Pretreatment Penalty Payment Status

Industrial Waste Register Bill Summary 1/1/2011 to 4/15/2012

License No. Name	<u>Issue Date</u>	Comments	Billed	<u>Paid</u>	<u>PaidDate</u>
January 2011					
FINES - 54-07-00-3622					
331620 BERKS PACKING	01/05/2011	3RD Q 2010	\$500.00	-\$500.00	01/24/2011
334354 CARPENTER CORPORATION	01/05/2011	3RD Q 2010	\$200.00	\$0.00	################
341901 CLOISTER CAR WASH AND LUBE	01/05/2011	3RD Q 2010	\$200.00	-\$200.00	02/03/2011
331117 CLOVER FARMS DAIRY	01/05/2011	3RD Q 2010	\$15,000.00	-\$15,000.00	02/07/2011
337763 CRESCENT BRASS MANUFACTURING	01/05/2011	3RD Q 2010	\$100.00	-\$100.00	01/24/2011
337763 CRESCENT BRASS MANUFACTURING	01/27/2011		\$265.05	-\$265.05	02/04/2011
334378 DIETRICH MILK PRODUCTS	01/05/2011	3RD Q 2010	\$8,100.00	-\$8,100.00	02/09/2011
337766 EXIDE CORPORATION	01/05/2011	3RD Q 2010	\$100.00	\$0.00	###############
			\$24,465.05	(\$24,165.05)	•
March 2011					
FINES - 54-07-00-3622					
331620 BERKS PACKING	03/07/2011	4TH Q 2010	\$100.00	-\$100.00	04/05/2011
341901 CLOISTER CAR WASH AND LUBE	03/07/2011	4TH Q 2010	\$600.00	-\$600.00	04/05/2011
331117 — CLOVER FARMS DAIRY	03/07/2011	4TH Q 2010	\$12,500.00	-\$12,500.00	04/07/2011
337763 CRESCENT BRASS MANUFACTURING	03/04/2011	4TH Q 2010	\$1,550.00	-\$550.00	#######################################
337763 CRESCENT BRASS MANUFACTURING	03/04/2011		\$265.05	-\$265.05	03/10/2011
337763 CRESCENT BRASS MANUFACTURING	03/25/2011		\$265.05	-\$265.05	04/04/2011
334378 DIETRICH MILK PRODUCTS	03/07/2011	4TH Q 2010	\$4,000.00	-\$4,000.00	04/06/2011
337766 ~ EXIDE CORPORATION	03/07/2011	4TH Q 2010	\$1,000.00	\$0.00	###############
338910 HOFMANN INDUSTRIES /	03/04/2011	4TH Q 2010	\$100.00	-\$100.00	04/20/2011
331089 IFS INDUSTRIES -	03/04/2011	4TH Q 2010	\$2,500.00	-\$2,500.00	04/08/2011
331621 PRIZER PAINTER STOVE WORKS	03/04/2011	4TH Q 2010	\$100.00	-\$100.00	04/05/2011
331097 SEALED AIR CORP	03/01/2011	4TH Q 2010	\$100.00	-\$100.00	04/05/2011
358062 TERMACO USA	03/08/2011	4TH Q 2010	\$350.00	-\$350.00	05/06/2011
337710 YUASA BATTERY INC -	03/01/2011	4TH Q 2010	\$50.00	-\$50.00	03/29/2011
			\$23,480.10	(\$21,480.10)	

April 2011

TIMES -	54-07-00-3622					
33 776 3	CRESCENT BRASS MANUFACTURING	04/22/2011		\$265.05	-\$265.05	04/28/2011
			_	\$265.05	(\$265.05)	
May 2011						
·						
FINES -	54-07-00-3622					
337763	CRESCENT BRASS MANUFACTURING	05/19/2011	_	\$265.05	-\$265.05	05/26/2011
			_	\$265.05	(\$265.05)	
June 2011	l					
FINES -	54-07-00-3622					
331155	ARAMARK UNIFORM SERVICES /	06/20/2011	2011-1ST Q	\$100.00	-\$100.00	07/12/2011
341901	CLOISTER CAR WASH AND LUBE	06/20/2011	2011-1ST Q	\$1,700.00	-\$1,700.00	07/18/2011
331117	CLOVER FARMS DAIRY	06/20/2011	2011-1ST Q	\$9,200.00	-\$9,200.00	08/03/2011
334378	DIETRICH MILK PRODUCTS	06/20/2011	2011-1ST Q	\$200.00	-\$200.00	08/03/2011
338910	HOFMANN INDUSTRIES	06/20/2011	1ST Q 2011	\$200.00	\$0.00 #	4###########
331089	IFS INDUSTRIES—	06/20/2011	2011-1ST Q	\$5,000.00	-\$5,000.00	08/03/2011
337731	PARAGON OPTICAL	06/16/2011	2011-1ST Q	\$100.00	\$0.00 #	######################################
			_	\$16,500.00	(\$16,200.00)	
July 2011						
·	54-07-00-3622					
·		07/20/2011		\$265.05	-\$265.05	07/20/2011
FINES -	54-07-00-3622	07/20/2011 07/11/2011		\$265.05 \$265.05	-\$265.05 -\$265.05	07/20/2011 07/20/2011
FINES - 337763	54-07-00-3622 CRESCENT BRASS MANUFACTURING		_			
FINES - 337763 337763	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING-		_	\$265.05	-\$265.05	
FINES - 337763	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING-		_	\$265.05	-\$265.05	
FINES - 337763 337763 September	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING-		_	\$265.05	-\$265.05	
FINES - 337763 337763 September	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING-		- 2011-2ND Q	\$265.05	-\$265.05	
FINES - 337763 337763 September	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING- r 2011 54-07-00-3622	07/11/2011	2011-2ND Q 2011-2ND Q	\$265.05 \$530.10	-\$265.05 (\$530.10)	07/20/2011
FINES - 337763 September FINES - 331155	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING- r 2011 54-07-00-3622 ARAMARK UNIFORM SERVICES	07/11/2011	•	\$265.05 \$530.10 \$150.00	-\$265.05 (\$530.10)	07/20/2011
FINES - 337763 September 5331155 331117	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING- r 2011 54-07-00-3622 ARAMARK UNIFORM SERVICES CLOVER FARMS DAIRY	07/11/2011 09/28/2011 09/27/2011	•	\$265.05 \$530.10 \$150.00 \$12,000.00	-\$265.05 (\$530.10) -\$150.00 -\$12,000.00	07/20/2011 10/26/2011 10/26/2011
FINES - 337763 September FINES - 331155 331117 337763	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING- r 2011 54-07-00-3622 ARAMARK UNIFORM SERVICES CLOVER FARMS DAIRY CRESCENT BRASS MANUFACTURING	07/11/2011 09/28/2011 09/27/2011 09/01/2011	2011-2ND Q	\$265.05 \$530.10 \$150.00 \$12,000.00 \$265.05	-\$265.05 (\$530.10) -\$150.00 -\$12,000.00 -\$265.05	07/20/2011 10/26/2011 10/26/2011 09/07/2011
FINES - 337763 September FINES - 331155 331117 337763 365363	54-07-00-3622 CRESCENT BRASS MANUFACTURING CRESCENT BRASS MANUFACTURING- r 2011 54-07-00-3622 ARAMARK UNIFORM SERVICES CLOVER FARMS DAIRY CRESCENT BRASS MANUFACTURING DAIRY FARMERS OF AMERICA	07/11/2011 09/28/2011 09/27/2011 09/01/2011 09/27/2011	2011-2ND Q 2ND Q 2011	\$265.05 \$530.10 \$150.00 \$12,000.00 \$265.05 \$12,150.00	-\$265.05 (\$530.10) -\$150.00 -\$12,000.00 -\$265.05 -\$12,150.00	07/20/2011 10/26/2011 10/26/2011 09/07/2011 11/09/2011

	,					
337731	PARAGON OPTICAL	09/27/2011	2ND Q 2011	\$100.00	\$0.00	###############
331154	PENSKE TRUCK LEASING /	09/23/2011	2ND Q 2011	\$100.00	-\$100.00	10/24/2011
331097	SEALED AIR CORP	09/22/2011	2ND Q 2011	\$200.00	-\$200.00	10/14/2011
337723	ST JOSEPH MEDICAL CENTER ~	09/22/2011	2011-2ND Q D	\$100.00	-\$100.00	10/19/2011
345103	SUN RICH FRESH FOODS INC	09/22/2011	2011-2ND Q	\$50.00	-\$50.00	10/28/2011
337716	TOM STURGIS PRETZELS INC	09/22/2011	2011-2ND Q	\$50.00	-\$50.00	10/14/2011
337715	UNIQUE PRETZELS	09/21/2011	2011-2ND Q	\$200.00	-\$200.00	10/12/2011
337713	UNITED CORRSTACK	09/21/2011	2011-2ND Q	\$150.00	-\$150.00	10/11/2011
338340	VAN BENNETT	09/21/2011	2ND Q 2011	\$100.00	\$0.00	################
	V	03/21/2011		\$34,965.05	(\$34,765.05)	
October	2011					
October	2011					
FINES -	54-07-00-3622					
337763	CRESCENT BRASS MANUFACTURING	10/26/2011		\$265.05	-\$265.05	11/03/2011
337763	CRESCENT BRASS MANUFACTURING	10/26/2011		\$265.05	-\$265.05	11/03/2011
				\$530.10	(\$530.10)	
Decembe	r 2011					
FINES -	54-07-00-3622					
337763	CRESCENT BRASS MANUFACTURING	12/16/2011		\$530.10	-\$530.10	12/22/2011
337723	ST JOSEPH MEDICAL CENTER	12/29/2011	2011-3RD Q D	\$100.00	-\$100.00	02/04/2012
358062	TERMACO USA	12/29/2011	2011-3RD Q	\$1,000.00		################
337716	TOM STURGIS PRETZELS INC	12/29/2011	2011-3RD Q	\$100.00	-\$100.00	02/07/2012
337715	UNIQUE PRETZELS	12/29/2011	2011-3RD Q	\$100.00	-\$100.00	03/06/2012
338340	VAN BENNETT	12/29/2011	2011-3RD Q	\$100.00	\$0.00	#######################################
	V			\$1,930.10	(\$1,730.10)	
January	2012					
FINES -	54-07-00-3622					
331155	ARAMARK UNIFORM SERVICES	01/04/2012	2011-3RD Q	\$200.00	-\$200.00	01/20/2012
331620	BERKS PACKING	01/04/2012	2011-3RD Q	\$100.00	-\$100.00	01/25/2012
341901	CLOISTER CAR WASH AND LUBE	01/04/2012	2011-3RD Q	\$1,000.00	-\$1,000.00	01/27/2012
337763	CRESCENT BRASS MANUFACTURING	01/04/2012	2011-3RD Q	\$100.00	-\$100.00	02/04/2012
337763	CRESCENT BRASS MANUFACTURING	01/17/2012		\$265.05	-\$265.05	01/23/2012
337766	EXIDE CORPORATION	01/04/2012	2011-3RD Q	\$400.00	-\$400.00	03/05/2012
336996	NATIONAL/YORGEY'S CLEANERS	01/04/2012	2011-3RD Q	\$200.00	-\$200.00	02/23/2012
364195	OROGRAIN MFG BAKERIES	01/04/2012	2011-3RD Q	\$300.00	-\$300.00	02/07/2012
		-				

337731 340271	PARAGON OPTICAL READING TRUCK BODY LLC	01/04/2012 01/04/2012	2011-3RD Q 2011-3RD Q	\$600.00 \$250.00 \$3,415.05	\$0.00 -\$250.00 (\$2,815.05)	######################################
April 2012						
FINES - 54-0	07-00-3622					
341901	CLOISTER CAR WASH AND LUBE	04/05/2012	2011-4TH Q	\$500.00	-\$500.00	04/24/2012
331117	CLOVER FARMS DAIRY	04/05/2012	2011-4TH Q	\$200.00	-\$200.00	05/07/2012
337763	CRESCENT BRASS MANUFACTURING	04/13/2012		\$265.05	\$0.00	##############
337763	CRESCENT BRASS MANUFACTURING	04/05/2012		\$795.15	-\$795.15	04/17/2012
365363	DAIRY FARMERS OF AMERICA	04/05/2012	2011-4TH Q	\$4,100.00	-\$4,100.00	05/07/2012
336996	NATIONAL/YORGEY'S CLEANERS	04/12/2012	2011-4TH Q	\$100.00	\$0.00	#############
337731	PARAGON OPTICAL	04/12/2012	2011-4TH Q	\$100.00	\$0.00	#############
337723	ST JOSEPH MEDICAL CENTER	04/12/2012	2011-4TH Q	\$600.00	-\$600.00	05/08/2012
				\$6,660.20	(\$6,195.15)	
			Grand Total	:\$113,005.85	(\$108,940.80)	ı

APPENDIX 8

DATA MONITORING SPREADSHEET

QUATERLY INFLUENT, EFFLUENT AND BIOSOLIDS SAMPLING

ANNUAL PRIORITY POLLUTANT SCANS ON PLANT INFLUENT, EFFLUENT AND BIOSOLIDS

PERFORMED:

8/18-19/11:

Influent

8/23-24/11:

Effluent

7/5/11:

Biosolids

2011 WEEKLY MERCURY TESTING AT PLANT INFLUENT POINTS AND PLANT EFFLUENT

MONTHLY FECAL COLIFORM TESTING FOR BIOSOLIDS

MONTHLY 503 ANALYSIS FOR PLANT BIOSOLIDS

BIOSOLIDS FORM 43 PERFORMED 3/4/11 AND 8/2/11

Additional Testing for bis(2-Ethylhexyl)phthalate or semivolatiles on Plant Influent, Effluent and Biosolids

2011 Influent Testing for TKN, Total Phosphorus, o-phosphate

DEP letter and NPDES amendment for mercury limit

DATA MONITORING SPREADSHEET QUATERLY INFLUENT, EFFLUENT AND BIOSOLIDS SAMPLING

ANNUAL PRIORITY POLLUTANT SCANS ON PLANT INFLUENT, EFFLUENT AND BIOSOLIDS

PERFORMED:

8/18-19/11:

Influent

8/23-24/11:

Effluent

7/5/11:

Biosolids

Facility Name				-						
Facility ID:	PAP026549	UNITS:	MG/L			Quarterly	,	Quarterly		Quarterly
Location:	INFLUENT			Date	Date	Date	Core Simulation in commission and the	Date		Date
	Pollutant	Goals	Frequency	January	February	3/2/2011	April	5/9/2011	June	7/7/2011
01002		0.0594	4			<0.005		<0.001		0.001
01027		0.0198	4			0.0011		<0.005		<0.005
01034		0.1293	4			0.021		0.022		0.018
01042	AM.	0.1602	4			0.057		0.062		0.102
00722	Open	0.023	4			<0.005		<0.004		<0.004
00720		0.34	4			0.007		0.007		0.007
01051		0.0581	4			0.019		0.02		0.01
71900		0.0002	. 4			0.0004		0.0001		0.0005
01062		0.014	0			0.044		0.05		0.06
01067	gerin process and the second of the second o	0.4668	4	•		0.014		0.025		0.011
46000		0.3618	0			0.04		0.062		0.088
01147		0.027	1							
01077		0.0989	4			<0.002		<0.005		<0.005
01092		0.3825	4			0.39		0.326		0.256
				410	354	350	339	393	388	396
				405	331	354	353	358	344	280
				42.2	37.5	32.3	30.4	31.9	31.6	32.9
	the state of the s					51.68		50	54.8	62
		7.15				5.26		8.6	9.7	10.6

Facility Name:	CITY OF READING WWTP						
Facility ID:	PAP026549				Quarterly		_
Location:	INFLUENT	Date			Date	Date	Entry Count
	Pollutant		Sandani alestratidas estrati	(elabar)	11/21/2011		DTfl 114 Total
01002		0.002			<0.001		5
01027		<0.005			<0.005		5
01034		0.014			0.013		5
01042		0.094			0.061		5
00722		0.013			<0.004		5
00720		0.034			0.007		5
01051		0.02			0.01		5
71900		0.0005			0.0001		5
01062		0.04			0.04		5
01067		0.012			0.007		5
46000		0.093			0.089		5
01147		0.005					1
01077		<0.005			<0.005		5
01092		0.261			0.252		5
		378	259	340	301	301	10
		290	252	276	261	312	10
		30.6	20.4	23	24	27.6	10
		53.7	46.5	54	45	60	9
	Distriction (opens) in the Section (Co. 1985)	7.2	6.8	6	7.3	18.3	9

Facility Name:	CITY OF READING WWTP	1								
Facility ID:	PAP026549	UNITS:	MG/L	Quarterly	Quarterly	Quarterly		Quarterly		
Location:	EFFLUENT			Date	Date		Date	Date	Entry Count	
	Pollutant	Goals	Frequency	3/2/2011	5/9/2011	7/7/2011		11/21/2011	DTfl	66 Total
01002	ARSENIC- TOTAL	0.427	4	<0.005	<0.001	<0.001	<0.001	<0.001		5
01027	CADMIUM- TOTAL	0.018	4	<0.001	<0.005	<0.005	<0.005	<0.005		5
01034	CHROMIUM- TOTAL	0.022	4	0.0046	0.005	0.008	0.005	<0.005		5
01042	COPPER- TOTAL	0.075	4	0.015	0.023	0.024	0.028	0.012		5
00722	CYANIDE- FREE (AMENABLE)	0.023	4	0.01	<0.004	<0.004	<0.004	0.004		5
00720	CYANIDE- TOTAL	Monitor	4	0.008	<0.004	0.013	0.015	0.006		5
01051	LEAD- TOTAL	0.111	4	<0.003	<0.01	<0.01	<0.01	<0.01		5
71900	MERCURY- TOTAL	0.00007	4	<0.00007	<0.0001	<0.0001	<0.0001	<0.0001		5
01062	MOLYBDENUM- TOTAL	No Goal	0	0.039	0.04	0.05	0.05	0.01	}	5
01067	NICKEL- TOTAL	3.43	4	<0.01	0.008	0.007	0.005	<0.005		5
46000	PHENOLS- TOTAL	0.136	0	<0.01	0.027	0.039	0.032	0.026		5
01147	SELENIUM- TOTAL	0.027	0				<0.002			1
01077	SILVER- TOTAL	0.037	4	<0.002	<0.005	<0.005	<0.005	<0.005		5
01092	ZINC- TOTAL	0.406	4	0.059	0.097	0.074	0.069	0.07	j	5

Facility Name:	CITY OF READING WWTP									
Facility ID:	PAP026549	UNITS:	MG/KG	503	503	Quarterly		503	503	503
Location:	SLUDGE		DRY WT	Date	Date		Date	Date	Date	Date
	Pollutant	Goals	Frequency			3/4/2011				
01002	ARSENIC- TOTAL	41	4	3.13	2.18		<10.1	4.66	3.1	3.75
01027	CADMIUM- TOTAL	39	4	3.34	2.87		4.3	3.53	4.11	4.04
01034	CHROMIUM- TOTAL	Monitor	4	96.2	87.5	114	118	114.6	144.4	131.6
01042	COPPER- TOTAL	1500	4	535.9	451.6		590	551.6	413.9	556.6
00722	CYANIDE- FREE (AMENABLE)	Monitor	4			<1.4				
00720	CYANIDE- TOTAL	Monitor	4			3.4				
01051	LEAD- TOTAL	300	4	116.7	96		113	113.8	122	159.6
71900	MERCURY- TOTAL	17	4	1.67	2.02		1.7	2.22	2.91	2.16
01062	MOLYBDENUM- TOTAL	75	0	46.5	49		48.1	58.5	67.5	71.6
01067	NICKEL- TOTAL	420	4	42.3	44.3		61.4	57.6	75.2	75.2
46000	PHENOLS- TOTAL	No Goal	0			15.2	13.2			
01147	SELENIUM- TOTAL	100	1	7.59	7.92		<25.3	9.38	7.46	6.37
01077	SILVER- TOTAL	Monitor	4			9.6	8.2			
01092	ZINC- TOTAL	2800	4	1597.1	1393.3		1730	1568.4	1567.8	1651.6

Facility Name:	CITY OF READING WWTP									
Facility ID:	PAP026549	Quarterly	503			503	503	503	503	Quarterly
Location:	SLUDGE	Date	Date	Date						
	Pollutant	5/6/2011	34 14							11/1/2011
01002	ARSENIC- TOTAL		3.77	2	3	4.43	3.95	4.39	3.82	
01027	CADMIUM- TOTAL		4.04	4	4	4.17	4.48	4.13	3.65	
01034	CHROMIUM- TOTAL	21.4	117.1	124	136	145.8	162.9	148	110.5	106
01042	COPPER- TOTAL		531.8	653	749	582.9	668.6	731.8	592.6	
00722	CYANIDE- FREE (AMENABLE)	<0.400		<1.83						<1.99
00720	CYANIDE- TOTAL	0.6		5						10
01051	LEAD- TOTAL		124	140	190	137.5	219.5	173	140.6	
71900	MERCURY- TOTAL		3.08	4	2	3.59	2.14	3.09	2.46	
01062	MOLYBDENUM- TOTAL		70.7	73	79	83.1	86	94.3	55.1	
01067	NICKEL- TOTAL		65.1	64.8	65	86.6	98.8	74.3	65.4	
46000	PHENOLS- TOTAL	4.4		95.9						34
01147	SELENIUM- TOTAL		6.23	6.8	5.9	7.79	8.41	5.76	4.13	
01077	SILVER- TOTAL	2.1		11	11					9.4
01092	ZINC- TOTAL		1627.7	1650	1810	1759.4	2297.8	2057.3	1634.1	

Facility Name:	CITY OF READING WWTP				
Facility ID:	PAP026549	503	503		
Location:	SLUDGE		Date	Date	ŀ
	Pollutant				DTfl
01002	ARSENIC- TOTAL	3.66	3.95		
01027	CADMIUM- TOTAL	4.43	4.77		
01034	CHROMIUM- TOTAL	129	120.5		
01042	COPPER- TOTAL	667.4	691.6		
00722	CYANIDE- FREE (AMENABLE)				
00720	CYANIDE- TOTAL				1
01051	LEAD- TOTAL	149.1	239.5		
71900	MERCURY- TOTAL	2.89	3.05		
01062	MOLYBDENUM- TOTAL	62.8	59.4		
01067	NICKEL- TOTAL	66.7	60		
46000	PHENOLS- TOTAL				
01147	SELENIUM- TOTAL	6	4.69		
01077	SILVER- TOTAL				
01092	ZINC- TOTAL	1775.7	1766		

Entry Count
172 Total
15
15
18
15
4
4
15
15
15
15
5
15
6
15

Facility Name:	CITY OF READING WWTP			O	O and and .	Dui a vita . I	2-11-44-	O combando
Facility ID: Location:	PAP026549 6th		· · · · · · · · · · · · · · · · · · ·	Quarterly Date	Quarterly Date	Date	Pollutants Date	Quarterly Date
Location.	Pollutant	Goals	Frequency	3/2/2011		# 8/9/2011		12/12/2011
01002	ARSENIC-TOTAL	0.0594		<0.005	<0.001	0.003		<0.001
01027	CADMIUM- TOTAL	0.0198	4	<0.001	<0.005	<0.005		<0.005
01034	CHROMIUM-TOTAL	0.1293	4	0.019	0.008	0.019		0.022
01042	COPPER-TOTAL	0.1602	4	0.049	0.035	0.085		0.058
00722	CYANIDE- FREE (AMENABLE)	0.023	4	<0.005	<0.004		<0.004	<0.004
00720	CYANIDE-TOTAL	0.34	4	<0.005	<0.004		0.008	0.014
01051	LEAD-TOTAL	0.0581	4	0.016	<0.01	0.03		0.01
71900	MERCURY-TOTAL	0.0002	4	0.0008	<0.0001	0.0006		0.0001
01062	MOLYBDENUM-TOTAL	0.014	0	0.075	0.04	0.06		0.05
01067	NICKEL-TOTAL	0.4668	4	0.011	0.007	0.01		0.013
46000	PHENOLS-TOTAL*	0.3618	0	0.05	0.081		0.092	0.102
01147	SELENIUM-TOTAL	0.027	1			<0.002		
01077	SILVER-TOTAL :	0.0989	4	<0.002	<0.005	<0.005		<0.005
01092	ZINC-TOTAL	0.3825	4	0.25	0.102	0.196		0.231
	Oil and Grease			34.9	16		19	23
	Oil and Grease - TPH			<2	<5			<5
	Total P			4.2	3.4	4.4		5
	Antimony					<0.005		
	Beryllium					<0.005		
	Thallium					<0.001		

Facility Name:	CITY OF READING WWTP							
Facility ID:	PAP026549			Quarterly	Quarterly	Priority F	Pollutants	Quarterly
Location:	Grit Chamber			Date	Date	Date	Date	Date
	Pollutant	Goals	Frequency	3/2/2011	5/27/2011	8/9/2011	8/10/2041	12/12/2011
01002	ARSENIC-TOTAL	0.0594	4	<0.005	<0.001	<0.001		<0.001
01027	CADMIUM- TOTAL	0.0198	4	<0.001	<0.005	<0.005		<0.005
01034	CHROMIUM-TOTAL	0.1293	4	<0.0025	<0.005	<0.005		<0.005
01042	COPPER-TOTAL	0.1602	4	0.055	0.083	0.075		0.064
00722	CYANIDE-FREE (AMENABLE)	0.023	4	<0.005	<0.004		<0.004	<0.004
00720	CYANIDE-TOTAL	0.34	4	<0.005	<0.004		0.004	0.006
01051	LEAD-TOTAL	0.0581	4	<0.003	<0.01	<0.01		<0.01
71900	MERCURY-TOTAL	0.0002	4	0.0002	0.0002	<0.0001		<0.0001
01062	MOLYBDENUM-TOTAL	0.014	0	<0.01	<0.01	0.01		<0.01
01067	NICKEL-TOTAL :	0.4668	4	<0.01	0.005	<0.005		<0.005
46000	PHENOLS-TOTAL	0.3618	0	0.02	0.043		0.084	0.1
01147	SELENIUM-TOTAL	0.027	1			<0.002		
01077	SILVER- TOTAL	0.0989	4	<0.002	<0.005	<0.005		<0.005
01092	ZINC-TOTAL	0.3825	4	0.13	0.155	0.162		<0.121
	Oil and Grease			13.9	8		23	16
	Oil and Grease - TPH			<2.2	<5			<5
	Total P.			3.9	5.6	4.4		3.8
	Antimony					<0.005		
	Beryllium					<0.005		
	Thallium					<0.001		

Now part of the ALS Group

4 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

ANALYTICAL RESULTS

IST PTR

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358001

Date Collected: 3/2/2011 08:40

Waste Water

Sample ID:

Raw Inf 11-1906

INFLUENT

Date Received: 3/2/2011 19:50

Matrix:

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
SEMIVOLATILES											
bis(2-Ethylhexyl)phthalate	21.6		ug/L	2.8	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr	
2,4,6-Tribromophenol (S)	101		%	38-134	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
2-Fluorobiphenyl (S)	75.6		%	37-113	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
2-Fluorophenol (S)	34.3		%	17-73	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
Nitrobenzene-d5 (S)	79.8		%	37-124	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
Phenol-d5 (S)	29		%	11-53	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
Terphenyl-d14 (S)	34.1		%	33-125	EPA 625	3/9/11	MPP	3/10/11 16:08	AJL	D1	
VET CHEMISTRY											
Phosphorus, Total	9.2		mg/L	0.50	EPA 365.1	3/3/11	MLM	3/4/11 04:39	KRK	C1	
METALS											
Arsenic, Total	ND		mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	- А1	
Cadmium, Total	0.0011		mg/L	0.0010	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Chromium, Total	0.021		mg/L	0.0025	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Copper, Total	0.057		mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Lead, Total	0.019		mg/L	0.0030	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Mercury, Total (XLow-level)	0.0004		mg/L	0.00007	EPA 245.1	3/17/11	MNP	3/17/11 10:42	MNP	Н	
Molybdenum, Total	0.044		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Nickel, Total	0.014		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	
Silver, Total	ND		mg/L	0.0020	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK		
Zinc, Total	0.39		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:35	JWK	A1	

Sample Comments:

Report has been modified to add Hg to the reporting compound list per c-o-c. DLB 3/14/11

Technical Manager

Now part of the ALS Group

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358002

Date Collected: 3/2/2011 08:42

Matrix:

Waste Water

Sample ID:

Raw Inf 11-1908

INFIVENT

Date Received: 3/2/2011 19:50

Parameters	Results Fla	ag Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
VET CHEMISTRY									
Cyanide, Total	0.0070	mg/L	0.0050	EPA 335.4	3/3/11	MLM	3/3/11 13:05	MLM	A1
Cyanide,Weak/Dissociable(Free)	ND	mg/L	0.0050	SM20-4500CNI	3/8/11	MLM	3/8/11 14:18	MLM	A2
Oil/Grease Hexane Extractable	59.6	mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D
Oil/Grease Silica Gel Treated	7.7	mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D
Phenolics	0.04	mg/L	0.01	EPA 420.4	3/10/11	MLM	3/10/11 14:40	TMG	С

Sample Comments:

Anna G Milliken

Technical Manager

34 Dogwood Lane
Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.analyticallab.com www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

ANALYTICAL RESULTS

IST OTR

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358003

Date Collected: 3/2/2011 09:28

Matrix:

Waste Water

Sample ID:

Final Eff 11-1918 REFLUENT

Date Received: 3/2/2011 19:50

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES										
bis(2-Ethylhexyl)phthalate	4.5		ug/L	2.8	EPA 625	3/9/11	MPP	3/10/11 15:20	AJŁ	D1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	93.8		%	38-134	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
2-Fluorobiphenyl (S)	73.6		%	37-113	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
2-Fluorophenol (S)	43.8		%	17-73	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
Nitrobenzene-d5 (S)	75.4		%	37-124	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
Phenol-d5 (S)	30.5		%	11-53	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
Terphenyl-d14 (S)	71.3		%	33-125	EPA 625	3/9/11	MPP	3/10/11 15:20	AJL	D1
VET CHEMISTRY										
Phosphorus, Total	2.4		mg/L	0.20	EPA 365.1	3/3/11	MLM	3/4/11 07:41	KRK	C1
METALS										
Arsenic, Total	ND		mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Cadmium, Total	ND		mg/L	0.0010	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Chromium, Total	0.0046		mg/L	0.0025	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Copper, Total	0.015		mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Lead, Total	ND		mg/L	0.0030	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Mercury, Total (XLow-level)	ND		mg/L	0.00007	EPA 245.1	3/17/11	MNP	3/17/11 10:44	MNP	Н
Molybdenum, Total	0.039		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Nickel, Total	ND		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Silver, Total	ND		mg/L	0.0020	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1
Zinc, Total	0.059		mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:39	JWK	A1

Sample Comments:

Report has been modified to add Hg to the reporting compound list per c-o-c. DLB 3/14/11

ann mille Technical Manager

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358004

Date Collected: 3/2/2011 08:30

011 08:30

Waste Water

Matrix:

Sample ID:

Final Eff 11-1925

efficenT

Date Received: 3/2/2011 19:50

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	-
VET CHEMISTRY											
Cyanide, Total	0.0080		mg/L	0.0050	EPA 335.4	3/3/11	MLM	3/3/11 13:05	MLM	A1	
Cyanide, Weak/Dissociable (Free)	0.010	1	mg/L	0.0050	SM20-4500CNI	3/8/11	MLM	3/8/11 14:18	MLM	A2	
Oil/Grease Hexane Extractable	ND		mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D	
Oil/Grease Silica Gel Treated	ND		mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D	
Phenolics	ND		mg/L	0.01	EPA 420.4	3/10/11	MLM	3/10/11 14:41	TMG	С	

Sample Comments:

Anna G Milliken

Technical Manager

ann mille

Report ID: 9892358 Page 6 of 13

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsqlobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

ANALYTICAL RESULTS

IST GTR

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358005

Date Collected: 3/2/2011 09:24

Matrix:

Waste Water

Sample ID:

6th 11-1923

Date Received: 3/2/2011 19:50

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr , v , v ,
WET CHEMISTRY									
Phosphorus, Total	4.2	mg/L	0.50	EPA 365.1	3/3/11	MLM	3/4/11 04:39	KRK	C1
METALS									
Arsenic, Total	ND	mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Cadmium, Total	ND	mg/L	0.0010	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Chromium, Total	0.019	mg/L	0.0025	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Copper, Total	0.049	mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Lead, Total	0.016	mg/L	0.0030	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Mercury, Total (XLow-level)	0.0008	mg/L	0.0003	EPA 245.1	3/17/11	MNP	3/17/11 11:40	MNP	F
Molybdenum, Total	0.075	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Nickel, Total	0.011	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Silver, Total	ND	mg/L	0.0020	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1
Zinc, Total	0.25	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:43	JWK	A1

Sample Comments:

Report has been modified to add Hg to the reporting compound list per c-o-c. DLB 3/14/11

Technical Manager

amm mille

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.analyticallab.com - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358006

Date Collected: 3/2/2011 09:22

Matrix:

Waste Water

Sample ID:

6th 11-1922

Date Received: 3/2/2011 19:50

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
VET CHEMISTRY									
Cyanide, Total	ND	mg/L	0.0050	EPA 335.4	3/3/11	MLM	3/3/11 13:05	MLM	A1
Cyanide, Weak/Dissociable (Free)	ND	mg/L	0.0050	SM20-4500CNI	3/8/11	MLM	3/8/11 14:18	MLM	A2
Oil/Grease Hexane Extractable	34.9	mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D
Oil/Grease Silica Gel Treated	ND	mg/L	2.0	EPA 1664A			3/11/11 06:30	AH	D
Phenolics	0.05	mg/L	0.01	EPA 420.4	3/10/11	MLM	3/10/11 14:44	TMG	С

Sample Comments:

Anna G Milliken

Technical Manager

Page 8 of 13 Report ID: 9892358

34 Dogwood Lane # Middletown, PA 17057 # Phone: 717-944-5541 # Fax: 717-944-1430 # www.analyticallab.com # www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

ANALYTICAL RESULTS

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358007

Date Collected: 3/2/2011 08:35

Matrix:

Waste Water

Sample ID:

Grit 11-1920

Date Received: 3/2/2011 19:50

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
WET CHEMISTRY									
Phosphorus, Total	3.9	mg/L	0.50	EPA 365.1	3/7/11	KRK	3/8/11 00:33	KRK	C1
METALS									
Arsenic, Total	ND	mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Cadmium, Total	ND	mg/L	0.0010	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Chromium, Total	ND	mg/L	0.0025	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Copper, Total	0.055	mg/L	0.0050	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Lead, Total	ND	mg/L	0.0030	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Mercury, Total (XLow-level)	0.0002	mg/L	0.00007	EPA 245.1	3/17/11	MNP	3/17/11 10:51	MNP	F
Molybdenum, Total	ND	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Nickel, Total	ND	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Silver, Total	ND	mg/L	0.0020	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1
Zinc, Total	0.13	mg/L	0.010	EPA 200.7	3/4/11	KMK	3/9/11 12:47	JWK	A1

Sample Comments:

Report has been modified to add Hg to the reporting compound list per c-o-c. DLB 3/14/11

Technical Manager

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892358 Quarterly Sampling

Lab ID:

9892358008

Date Collected: 3/2/2011 08:33

Matrix:

Waste Water

SeechAIN

Date Received: 3/2/2011 19:50

Sample ID: -6th 11-1919 GRIT

of cutied V a. Hendrucho

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
WET CHEMISTRY									
Cyanide, Total	ND	mg/L	0.0050	EPA 335.4	3/3/11	MLM	3/3/11 13:05	MLM	A1
Cyanide, Weak/Dissociable (F	ND	mg/L	0.0050	SM20-4500CNI	3/8/11	MLM	3/8/11 14:18	MLM	A2
Oil/Grease Hexane Extractable	13.9	mg/L	2.2	EPA 1664A			3/11/11 06:30	AH	D
Oil/Grease Silica Gel Treated	ND	mg/L	2.2	EPA 1664A			3/11/11 06:30	AH	D
Phenolics	0.02	mg/L	0.01	EPA 420.4	3/10/11	MLM	3/10/11 14:45	TMG	С

Sample Comments:

Anna G Milliken

Technical Manager

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

IST OTR

Workorder: 9892868 11-1973 Quarterly

Lab ID:

9892868001

Date Collected: 3/4/2011 08:24

Matrix:

Solid

Sample ID:

Beltpress Sludge, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
EMIVOLATILES									
Acenaphthene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Acenaphthylene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Anthracene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	
Benzidine	ND	ug/kg	5540	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Benzo(a)anthracene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Benzo(a)pyrene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Benzo(b)fluoranthene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Benzo(g,h,i)perylene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Benzo(k)fluoranthene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
4-Bromophenyl-phenylether	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Butylbenzylphthalate	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
4-Chloro-3-methylphenol	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
ois(2-Chloroethoxy)methane	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
ois(2-Chloroethyl)ether	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
ois(2-Chloroisopropyl)ether	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2-Chloronaphthalene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2-Chiorophenol	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
1-Chlorophenyl-phenylether	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Chrysene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Di-n-Butylphthalate	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Di-n-Octylphthalate	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Dibenzo(a,h)anthracene	ND	ug/kg	333	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
1,2-Dichlorobenzene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
1,3-Dichlorobenzene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
1,4-Dichlorobenzene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
3.3-Dichlorobenzidine	ND	ug/kg	2990	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,4-Dichlorophenol	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Diethylphthalate	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,4-Dimethylphenol	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Dimethylphthalate	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,4-Dinitrophenol	ND	ug/kg	2990	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,4-Dinitrotoluene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,6-Dinitrotoluene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
,2-Diphenylhydrazine	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
ois(2-Ethylhexyl)phthalate	8960	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Fluoranthene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Fluorene	ND	ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Hexachlorobenzene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
-lexachlorobutadiene	ND	ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
-texachlorocyclopentadiene	ND	ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3

ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo - Winnipeg - Yellowknife United States: Cincinnati - Everett - Fort Collins - Holland - Houston - Middletown - Salt Lake City - Spring City - York - Mexico: Monterrey

`4 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892868 11-1973 Quarterly

Lab ID: 9892868001

Date Collected: 3/4/2011 08:24

Matrix: Solid

Sample ID:

Beltpress Sludge, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Hexachloroethane	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
sophorone	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	
2-Methyl-4,6-dinitrophenol	ND		ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Naphthalene	319		ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Nitrobenzene	ND		ug/kg	665	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2-Nitrophenol	ND		ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
4-Nitrophenol	ND		ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
N-Nitrosodimethylamine	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
N-Nitroso-di-n-propylamine	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
N-Nitrosodiphenylamine	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Pentachlorophenol	ND		ug/kg	2990	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Phenanthrene	405		ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Phenol	ND		ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Pyrene	ND		ug/kg	277	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
1,2,4-Trichlorobenzene	ND		ug/kg	554	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2,4,6-Trichlorophenol	ND		ug/kg	1500	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	84.2		%	37-123	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2-Fluorobiphenyl (S)	62.5		%	45-105	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
2-Fluorophenol (S)	53.1		%	35-104	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	
Nitrobenzene-d5 (S)	66.7		%	41-110	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	
Phenol-d5 (S)	54.8		%	40-100	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
Terphenyl-d14 (S)	50.1		%	38-113	SW846 8270D	3/9/11	J1H	3/10/11 03:48	CGS	A3
VET CHEMISTRY										
Color, Apparent	Black				In-House			3/9/11 11:20	АН	Α
Cyanide, Total	3.4		mg/kg	1.4	SW846 9012B	3/7/11	KLR	3/7/11 12:38	KLR	Α
Cyanide,Weak/Dissociable(F	ND	1	mg/kg	1.4	SM20-4500CNI	3/8/11	MLM	3/8/11 14:18	MLM	A2
Hexane Extractable Material	65600		mg/kg	1090	SW846 9071B			3/15/11 08:00	NJA	Α
ayering	None				In-House			3/9/11 11:20	AH	Α
Moisture	82.2		%	0.1	SM20-2540 G			3/8/11 14:50	KAK	Α
Number of Phases	1				In-House			3/9/11 11:20	AΗ	Α
Odor	Sludge				In-House			3/9/11 11:20	AH	Α
Phenolics	15.2		mg/kg	1.8	SW846 9066	3/15/11	KRK	3/16/11 03:19	KRK	Α
Phosphorus, Total	17000		mg/kg	526	EPA 365.1	3/14/11	KRK	3/15/11 02:03	KRK	A4
Physical State	Solid				In-House			3/9/11 11:20	AΗ	Α
Silica Gel Treated HEM	20300		mg/kg	1090	SW846 9071B			3/15/11 08:00	NJA	Α
Total Solids	17.8		%	0.1	SM20-2540 G			3/8/11 14:50	KAK	Α

ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 9892868 Page 4 of 8

34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsqlobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

ANALYTICAL RESULTS

Workorder: 9892868 11-1973 Quarterly

Lab ID:

9892868001

Date Collected: 3/4/2011 08:24

Matrix:

Solid

Sample ID:

Beltpress Sludge, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
METALS									
Chromium, Total	114	mg/kg	4.8	SW846 6010C	3/8/11	KMK	3/11/11 01:59	SRT	A1
Silver, Total	9.6	mg/kg	2.4	SW846 6010C	3/8/11	KMK	3/11/11 01:59	SRT	A1

Sample Comments:

One or more of the matrix spike compounds for the EPA 8270 analysis were recovered outside of the quality control limits due to sample matrix interferences. The LCS sample associated to this sample was within control limits.

One or more of the values for relative percent difference did not meet the quality control limits in the GC/MS semivolatile matrix spike duplicate associated with this sample.

Anna G Milliken

Technical Manager

M.J. Reider Associates, Inc.

and atr

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

05/25/11

Project Number: 1149774 Lab ID:

124-11-0017352

Date Collected: 05/09/11 08:52

Collected By:

Client

Date Received:

05/11/11 15:15

Sample Desc: Raw 11-4096 (Composite) / NF/JeNT

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	9.2	mg/l	.5	10	SM4500P-F	05/13	15:44	JCL
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/L	.001	1	EPA 200.9	05/16	17:29	RLS
Cadmium, Total	<.005	mg/l	.005	. 1	EPA 200.7	05/16	10:37	LNA
Chromium, Total	0.022	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
Copper, Total	0.062	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Lead, Total	0.02	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Mercury, Total	0.0001	mg/L	.0001	1	EPA 245.1	05/18	11:06	JAW
Molybdenum, Total	0.05	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Nickel, Total	0.025	mg/l	. 005	1	EPA 200.7	05/16	10:37	LNA
Silver, Total	<.005	mg/l	.005	1	EPA 200.7	05/18	12:20	LNA
Zinc, Total	0.326	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<.01	mg/l	.01	1	EPA 625	05/16	16:51	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	05/13	07:00	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1

M.J. Reider Associates, Inc.

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: 05/25/11

Project Number: 1149774

Lab ID:

124-11-0017353 Date Collected: 05/09/11 08:53

Collected By:

Client

Date Received: 05/11/11 15:15

Sample Desc: Raw 11-4097 (Grab) / NF/venT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
Cyanide, Free	<.004	mg/L	.004	1	DEP 1	05/12	14:48	JCL
Cyanide, Total	0.007	mg/L	.004	1	10204001X	05/12	14:48	JCL
Phenols (4AAP)	0.062	mg/L	.005	1	EPA 420.4	05/16	11:55	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	22	mg/l	5	1	EPA 1664	05/18	11:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	05/23	13:00	JLS

Distribution of Reports:

Reviewed and Approved b

Richard Wolfe Technical Director

Page 1 of 1

M.J. Reider Associates, Inc.

2rd atr

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

05/23/11

Project Number:

1149774

Lab ID:

124-11-0017354 05/09/11 09:42

Date Collected: Collected By:

Client

Date Received:

05/11/11 15:15

Sample Desc: Final 11-4109 (Composite) & FFIUENT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	T e st Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	3.23	mg/l	.1	2	SM4500P-F	05/13	15:44	JCL
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/l	.001	1	EPA 200.9	05/16	17:29	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
Chromium, Total	0.005	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
Copper, Total	0.023	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Lead, Total	<.01	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	05/18	11:06	JAW
Molybdenum, Total	0.04	mg/l	.01	1	EPA 200.7	05/16	10:37	LNA
Nickel, Total	0.008	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
Silver, Total	<.005	mg/l	.005	1	EPA 200.7	05/18	12:20	LNA
Zinc, Total	0.097	mg/l	.005	1	EPA 200.7	05/16	10:37	LNA
ORGANIC								
BASE NEUŢRALS								
Bis(2-Ethylhexyl) phthalate	<.01	mg/L	.01	1	EPA 625	05/16	16:51	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	05/13	07:00	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1

M.J. Reider Associates, Inc.

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

05/23/11

Project Number:

1149774

Lab ID: Date Collected: 124-11-0017355 05/09/11 08:02

Collected By:

Client

Date Received:

05/11/11 15:15

Sample Desc: Final 11-4086 (Grab) effluent

				Rep.	Dilutn		Test	Test	
		Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
				~~~~					
CHEMI	STRY								
COL	ORMETRIC								
	Cyanide, Free	<.004	mg/l	.004	1	DEP 1	05/12	14:48	JCL
	Cyanide, Total	<.004	mg/l	.004	1	10204001X	05/12	14:48	JCL
	Phenols (4AAP)	0.027	mg/l	.005	1	EPA 420.4	05/16	11:55	JCL
0&G/T	PH								
GEN	ERAL								
	N-Hexane Extractable Material (O&G)	<5	mg/l	5	1	EPA 1664	05/18	11:00	JLS
	Silica Gel Treated N-Hexane Extract(TPH)	<b>&lt;</b> 5	mg/l	5	1	EPA 1664	05/18	11:00	JLS

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



and atr

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: 6th Street 11-4715 (Composite)

DEFI. OF PUBLIC WORKS

Date of Report: 06/21/11 Project Number: 1151873

Lab ID:

124-11-0020292

Date Collected: 05/28/11 09:04

Collected By: CLIENT

Date Received:

06/01/11 15:10

				าะกรูเ					
				Rep.	Dilutn		Test	Test	
		Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
CHEMIS	TRY								
COLO	RMETRIC								
	Phosphorus as P, Total	3.4	mg/l	.5	10	SM 4500P-E	06/07	10:30	ALD
INORGA	NIC								
TOTA	L								
	Arsenic, Total	<.001	mg/l	.001	1	EPA 200.9	06/02	19:02	RLS
	Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
	Chromium, Total	0.008	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
	Copper, Total	0.035	mg/l	.01	1	EPA 200.8	06/03	12:04	RLS
	Lead, Total	<.01	mg/l	.01	1	EPA 200.8	06/03	12:04	RLS
İ	Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	06/08	11:12	JAW
İ	Molybdenum, Total	0.04	mg/l	.01	1	EPA 200.8	06/03	12:04	RLS
	Nickel, Total	0.007	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
-	Silver, Total	<.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
	Zinc, Total	0.102	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS

### COMMENTS

01 Preservative on label of bottle for PO4-P says HNO3. Preservative for PO4-P should be H2SO4. The pH was <2. Used this bottle for analysis.

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEFT. OF PUBLIC WORKS

Date of Report: 06/21/11

Project Number: 1151873

Lab ID:

124-11-0020293 Date Collected: 05/29/11 09:08

Collected By: Client

Date Received:

06/01/11 15:10

Sample Desc: 6th Street 11-4716 (Grab)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	06/03	16:52	JCL
Cyanide, Total	<.004	mg/l	.004	1	10204001X	06/03	16:52	JCL
Phenols (4AAP)	0.081	mg/l	.01	1	EPA 420.4	06/07	16:14	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	16	mg/l	5	1	EPA 1664	06/08	10:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	06/17	08:30	JLS

Distribution of Reports:

Reviewed and Approved b

Richard Wolfe Technical Director

Page 1 of 1







## CENTIFICATE OF ANALTOIS M.J. Reider Associates, Inc.



and atr

Attention: Amy L. Morriss Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEFT. OF PUBLIC WORKS

Date of Report: Project Number:

06/21/11 1151873

Lab ID:

124-11-0020295

Date Collected: 05/27/11 08:39

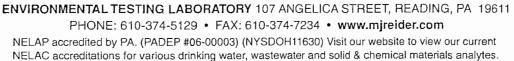
Collected By:

Client

Date Received:

06/01/11 15:10

Sample Desc: GC 11-4691 (Grab) C-R; T


	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	06/03	16:52	JCL
Cyanide, Total	<.004	mg/l	.004	1	10204001X	06/03	16:52	JCL
Phenols (4AAP)	0.043	mg/l	.01	1	EPA 420.4	06/07	16:14	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	8	mg/l	5	1	EPA 1664	06/08	12:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	<b>&lt;</b> 5	mg/l	5	1	EPA 1664	06/17	08:30	JLS

Distribution of Reports:

Richard Wolfe Technical Director

Page 1 of 1









M.J. Reider Associates, Inc.



Attention: Amy L. Morriss
Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: GC 11-4690 (Composite) GRIT

DEPT. OF PUBLIC WORKS

Date of Report: 06/21/11 Project Number: 1151873

Lab ID: 124-11-0020296

Date Collected: 05/27/11 08:35

Collected By: CLIENT

Date Received: 06/01/11 15:10

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	5.6	mg/l	.5	10	SM 4500P-E	06/07	10:30	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/l	.001	1	EPA 200.9	06/02	19:02	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
Chromium, Total	<.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
Copper, Total	0.083	mg/l	.01	1	EPA 200.8	06/03	12:04	RLS
Lead, Total	<.01	mg/L	.01	1	EPA 200.8	06/03	12:04	RLS
Mercury, Total	0.0002	mg∕l	.0002	1	EPA 245.1	06/08	11:12	JAW
Molybdenum, Total	<.01	mg/l	.01	1	EPA 200.8	06/03	12:04	RLS
Nickel, Total	0.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
Silver, Total	<.005	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS
Zinc, Total	0.155	mg/l	.005	1	EPA 200.8	06/03	12:04	RLS

#### COMMENTS

01 Preservative on label of bottle for PO4-P says HNO3. Preservative for PO4-P should be H2SO4. The pH was <2. Used this bottle for analysis.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention:

Amy Morriss

Reported to: City of Reading WWTP Industries

815 Washington St. Reading PA 19601

Date of Report:

05/26/11

Project Number:

1149566

Lab ID:

2884-11-0016844

Account Rep:

Richard Wolfe

Date Received:

05/06/11

Date Collected:

05/04/11

Time Collected:

08:30

Collected By:

Client

Sample Description: Belt Press Sludge, 11-3930 (Composite)

* Results expressed as Dry Weight

			Detection	1	Test	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
CHEMISTRY					~~~~	·	
COLORMETRIC							
Cyanide, Free	<0.400	* mg/kg	0.400	DEP 1	05/11	13:22	fol
Cyanide, Total	0.6	* mg/kg	0.4	10204001X	05/11	13:22	-
Phenols (4AAP)	4.4	* mg/kg	1.0	EPA 420.4	•	11:13	•
	3220	-, -	125		05/12		•
Phosphorus as P, Total	3220	* mg/kg	125	SM 4500P-E	05/11	06:50	ald
PHYSICAL	0	1	4		05 /05	40.44	
Visual Color	Gray-black	color	1	VISUAL	05/25	12:16	whc
RESIDUES	40.5	•					
Solids, Total	18.2	%	1	SM 2540G	05/08	11:40	eps
INORGANIC							
TOTAL	•						
Chromium, Total	21.4	* mg/kg	0.500	SW846 6010	05/10	10:28	lna
Silver, Total	2.1	* mg/kg	0.50	SW846 6010	05/11	12:46	lna
O&G/TPH							
GENERAL							
N-Hexane Extractable Material (O&G)	12800	* mg/kg	250	EPA 1664	05/11	08:15	jls
Silica Gel Treated N-Hexane Extract(TPH)	2460	* mg/kg	250	EPA 1664	05/23	13:00	jls
ORGANIC		•			•		-
ACID COMPOUNDS				•			
2,4,6-Trichlorophenol	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
2,4-Dichlorophenol	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
2,4-Dimethylphenol	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
2,4-Dinitrophenol	<50.0	* mg/kg	50.0	sw846 8270	05/17	06:39	meb
2-Chlorophenol	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
2-Nitrophenol	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
— · · · · · · · · · · · · · · · · · · ·		/ 6			/		

Distribution of Report:

Amy Morriss - City of Reading WWTP Industries

M. J. Reider Associates, Inc. Reviewed and Approved By:

Richard Wolfe

Technical Director

Page 1 of 4

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611



# M.J. Reider Associates, Inc.



Attention: Amy Morriss

Reported to: City of Reading WWTP Industries

815 Washington St. Reading PA 19601 Date of Report: 05/26/11 Project Number: 1149566

Lab ID: 2884-11-0016844 Account Rep: Richard Wolfe

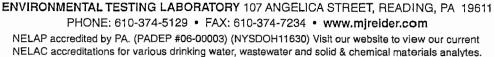
Date Received: 05/06/11
Date Collected: 05/04/11
Time Collected: 08:30
Collected By: Client

Sample Description: Belt Press Sludge, 11-3930 (Composite)

#### * Results expressed as Dry Weight

Results
4-Chloro-3-methylphenol <20.0
4-Nitrophenol
Pentachlorophenol       <50.0
Phenol
BASE NEUTRALS  1,2,4-Trichlorobenzene <10.0 * mg/kg 10.0 \$W846 8270 05/17 06:39 meb  1,2-Dichlorobenzene (o-Dichlorobenzene) <10.0 * mg/kg 10.0 \$W846 8270 05/17 06:39 meb  1,2-Diphenylhydrazine (as Azobenzene) <10.0 * mg/kg 0.500 \$W846 8270 05/17 06:39 meb
1,2,4-Trichlorobenzene       <10.0
1,2-Dichlorobenzene (o-Dichlorobenzene) <10.0
1,2-Diphenylhydrazine (as Azobenzene) <10.0
1,3-Dichlorobenzene <10.0 * mg/kg 0.500 \$W846 8270 05/17 06:39 meb
1,4-Dichlorobenzene <10.0 * mg/kg 10.0 \$W846 8270 05/17 06:39 meb
2,4-Dinitrotoluene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
2,6-Dinitrotoluene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
2-Chloronaphthalene <10.0 * mg/kg 10.0 \$W846 8270 05/17 06:39 meb
3,3'-Dichlorobenzidine <20.0
3,4-Benzofluoranthene <10.0
4-Bromophenyl phenyl ether <10.0
4-Chlorophenyl phenyl ether <10.0 * mg/kg 10.0 \$\text{SW846 8270 05/17 06:39 meb}
Acenaphthene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
Acenaphthylene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
Anthracene <10.0 * πg/kg 10.0 sw846 8270 05/17 06:39 meb
Benzidine <20.0 * mg/kg 20.0 \$W846 8270 05/17 06:39 meb
Benzo(a)anthracene <10.0 * mg/kg 10.0 \$W846 8270 05/17 06:39 meb
Benzo(a)pyrene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
Benzo(ghi)perylene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb
Benzo(k)fluoranthene <10.0 * mg/kg 10.0 SW846 8270 05/17 06:39 meb

Distribution of Report:


Amy Morriss - City of Reading WWTP Industries

M. J. Reider Associates, Inc. Reviewed and Approved By:

Richard Wolfe Technical Director

Page 2 of 4









# M.J. Reider Associates, Inc.



Attention:

Amy Morriss

Reported to: City of Reading WWTP Industries

815 Washington St. Reading PA 19601 Date of Report: 05/26/11

Project Number: 1149566

Lab ID: 2884-11-0016844
Account Rep: Richard Wolfe
Date Received: 05/06/11
Date Collected: 05/04/11

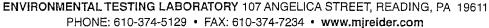
Time Collected: 08:30
Collected By: Client

Sample Description: Belt Press Sludge, 11-3930 (Composite)

* Results expressed as Dry Weight

	Results	Unit	Detectio Limit	n Procedure	Test Date	Test Time	Analyst
			40.0				
Bis(2-chloroethoxy)methane	<10.0	* mg/kg	10.0	sw846 8270	05/17	06:39	
Bis(2-Chloroethyl) ether	<10.0	* mg/kg	10.0	sw846 8270	05/17	06:39	meb
Bis(2-Chloroisopropyl) ether	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Bis(2-Ethylhexyl) phthalate	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Butyl benzyl phthalate	<10.0	★ mg/kg	10.0	SW846 8270	05/17	06:39	meb
Chrysene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Di-n-butyl phthalate	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Di-n-octyl phthalate	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Dibenz(a,h)anthracene	<10.0	*nπg/kg	10.0	SW846 8270	05/17	06:39	meb
Diethyl phthalate	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Dimethyl phthalate	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Fluoranthrene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Fluorene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Hexachlorobenzene	<u>.&lt;10.0</u>	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Hexachlorobutadiene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Hexachlorocyclopentadiene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Hexachloroethane	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Indeno(1,2,3-cd)pyrene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Isophorone	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
N-Nitrosodi-n-propylamine	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
N-Nitrosodimethylamine	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
N-Nitrosodiphenylamine	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Naphthalene	<10.0	★ mg/kg	10.0	SW846 8270	05/17	06:39	meb
Nitrobenzene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb
Phenanthrene	<10.0	* mg/kg	10.0	sw846 8270	05/17	06:39	meb
Pyrene	<10.0	* mg/kg	10.0	SW846 8270	05/17	06:39	meb

Distribution of Report:


Amy Morriss - City of Reading WWTP Industries

M. J. Reider Associates, Inc. Reviewed and Approved By:,

Richard Wolfe Technical Director

Page 3 of 4









M.J. Reider Associates, Inc.



3Rd GTR RAW (INFlueNT)

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEIVED

JUL 25 2011 DEPT - OF PUBLIC WORKS Date of Report:

07/18/11

Lab ID:

Project Number: 1155272

124-11-0026140 Date Collected: 07/07/11 08:49

Collected By:

Client

Date Received:

07/08/11 15:30

Sample Desc: RC 11-5988 (Composite)

	David *	11	Rep.	Dilutn	Procedure	Test	Test	Ammilyant
	Result 	Unit 	Limit 	Factor		Date 	Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	9.0	mg/l	.5	10	SM 4500P-E	07/12	10:10	ALD
INORGANIC								
TOTAL								
Arsenic, Total	0.001	mg/l	.001	1	EPA 200.9	07/13	02:00	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
Chromium, Total	0.018	mg/L	.005	1	EPA 200.8	07/13	12:29	RLS
Copper, Total	0.102	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Lead, Total	0.01	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Mercury, Total	0.0005	mg/l	.0001	1	EPA 245.1	07/14	14:14	JAW
Molybdenum, Total	0.06	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Nickel, Total	0.011	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
Silver, Total	<.005	mg/l	.005	1	EPA 200.7	07/13	12:11	LNA
Zinc, Total	0.256	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	07/12	12:40	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	07/11	08:30	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall

815 Washington St.

Reading PA 19601

RECEIVED

JUL 25 2011

DEFI. OF PUBLIC WORKS

RAW (INFlueNT)

Date of Report: 07/18/11

Project Number: 1155272

Lab ID:

124-11-0026142

Date Collected: 07/08/11 08:47

Collected By:

Client

Date Received:

07/08/11 15:30

Sample Desc: RC 11-5987 (Grab)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	07/13	14:44	JCL
Cyanide, Total	0.007	mg/l	.004	1	10204001x	07/13	14:44	JCL
Phenols (4AAP)	0.088	mg/l	.01	1	EPA 420.4	07/13	11:43	JCL
O&G/TPH								
GENERAL								
Oil and Grease	13	mg/l	5	1	EPA 1664	07/11	13:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	8	mg/l	5	1	EPA 1664	07/13	13:00	JLS

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



3Rd GTR

FINAL (EfflueNT)

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 RECEIVED

JUL 25 2011

DEFT. OF PUBLIC WORKS

Date of Report:

07/18/11

Project Number:

1155272

Lab ID:

124-11-0026139

Date Collected:

07/07/11 09:26

Collected By:

Client

Date Received:

07/08/11 15:30

Sample Desc: FC 11-6000 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyat
								Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	4.2	mg/l	.5	10	SM 4500P-E	07/12	10:10	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/l	.001	1	EPA 200.9	07/13	02:00	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
Chromium, Total	0.008	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
Copper, Total	0.024	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Lead, Total	<.01	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	07/14	14:14	JAW
Molybdenum, Total	0.05	mg/l	.01	1	EPA 200.8	07/13	12:29	RLS
Nickel, Total	0.007	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
Silver, Total	<.005	mg/l	.005	1	EPA 200.7	07/13	12:11	LNA
Zinc, Total	0.074	mg/l	.005	1	EPA 200.8	07/13	12:29	RLS
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	07/12	12:40	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	07/11	08:30	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEIVED DEPT. OF PUBLIC WORKS Date of Report:

07/18/11

FINAL (EFFLUENT)

Project Number:

1155272

Lab ID:

124-11-0026141 Date Collected: 07/08/11 08:12

Collected By:

Client

Date Received:

07/08/11 15:30

Sample Desc: FG 11-5967 (Grab)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	07/13	14:44	JCL
Cyanide, Total	0.013	mg/l	.004	1	10204001X	07/13	14:44	JCL.
Phenols (4AAP)	0.039	mg/l	.01	1	EPA 420.4	07/13	11:43	JCL
O&G/TPH								
GENERAL								
Oil and Grease	<b>&lt;</b> 5	mg/l	5	1	EPA 1664	07/11	13:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	07/11	13:00	JLS

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

08/30/11

Project Number:

1159063

Lab ID:

124-11-0032799

Date Collected:

08/19/11 09:00

Collected By:

CLIENT

Date Received:

08/19/11 15:30

Sample Desc: 11-7356 RG (Priority Pollutants, 4 Grabs Composited @ lab; collected @

, ,	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
RGANIC								
VOLATILES								
1,1,1-Trichloroethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,1,2,2-Tetrachloroethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,1,2-Trichloroethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,1-Dichloroethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,1-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,2-Dichlorobenzene (o-Dichlorobenzene)	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,2-Dichloroethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,2-Dichloropropane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
1,3-Dichlorobenzene	<5	ug/L	5	1	EPA 624	08/19	11:04	GXF
1,4-Dichlorobenzene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
2-Chloroethylvinyl Ether	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Acrolein	<50	ug/l	50	1	EPA 624	08/19	11:04	GXF
Acrylonitrile	<50	ug/l	50	1	EPA 624	08/19	11:04	GXF
Benzene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Bromoform (Tribromomethane)	<5	ug/L	5	1	EPA 624	08/19	11:04	GXF
Bromomethane (Methyl Bromide)	<10	ug/L	10	1	EPA 624	08/19	11:04	GXF
Carbon Tetrachloride	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Chlorobenzene (Monochlorobenzene)	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Chlorodibromomethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Chloroethane	<10	ug/l	10	1	EPA 624	08/19	11:04	GXF
Chloroform	<5	ug/L	5	1	EPA 624	08/19	11:04	GXF
Chloromethane (Methyl Chloride)	<10	ug/l	10	1	EPA 624	08/19	11:04	GXF
cis-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
cis-1,3-Dichloropropylene	<b>&lt;</b> 5	ug/L	5	1	EPA 624	08/19	11:04	GXF
Dichlorobromomethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Ethylbenzene	<5	ug/L	5	1	EPA 624	08/19	11:04	GXF
Library Search, Volatiles	see comment	ug/L	15	1	EPA 624	08/19	11:04	GXF

Distribution of Reports:

Methylene Chloride

Reviewed and Approved by:

08/19 11:04 GXF

Richard Wolfe

EPA 624

Technical Director

Page 1 of 2

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.

ug/l







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

08/30/11

Project Number:

1159063

Lab ID:

124-11-0032799

Date Collected:

08/19/11 09:00

Collected By: Date Received: CLIENT 08/19/11 15:30

Sample Desc: 11-7356 RG (Priority Pollutants, 4 Grabs Composited @ lab; collected @

0900, 1000, 1315 & 1505)

INFILLENT

0,00, 1000, 1010 2 1000,	10 FLOEN!		Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
Tetrachloroethylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Toluene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
trans-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
trans-1,3-Dichloropropylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Trichloroethylene	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Trichlorofluoromethane	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF
Vinyl Chloride	<10	ug/l	10	1	EPA 624	08/19	11:04	GXF
Xylenes (Total)	<5	ug/l	5	1	EPA 624	08/19	11:04	GXF

#### COMMENTS

01 The VOC library search tentatively identified 1-Propanol, 2-Propanol, Acetone, Carbon disulfide, and Limonene.

Distribution of Reports:

Technical Director

Page 2 of 2







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/30/11

Project Number:

1159063

Lab ID:

124-11-0032798

Date Collected:

08/19/11 09:00

Collected By:

CLIENT

Date Received:

08/19/11 15:30

Sample Desc: 11-7356 RG (Priority Pollutants, Grab) /NE/Vent

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	0.013	mg/l	.004	1	DEP 1	08/23	10:46	JCL
Cyanide, Total	0.034	mg/L	.004	1	10204001X	08/22	16:02	JCL
Phenols (4AAP)	0.093	mg/l	.01	1	EPA 420.4	08/23	14:12	JCL
O&G/TPH								
GENERAL								
Oil and Grease	12	mg/L	5	1	EPA 1664	08/22	11:00	JLS

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1





M.J. Reider Associates, Inc.



RECEIVED

DEC 19 2011

Reported To: City of Reading WWTP c/o City Hall

Attention: Amy L. Morriss

815 Washington St.

DEPT. OF PUBLIC WORKS AMENDED

Reading PA 19601

Date of Report: Project Number:

12/14/11

PRIORITY

1159063

Lab ID:

BRd QTR

124-11-0032797 (INFI 08/18/11 09:04

Date Collected:

CLIENT

Collected By: Date Received:

08/19/11 15:30

Sample Desc: 11-7353 RC (Priority Pollutants, Composite)

INFLUENT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	7.8	mg/l	.5	10	SM 4500P-E	08/23	06:50	ALD
INORGANIC								
TOTAL								
Antimony, Total	<.005	mg/l	.005	1	EPA 200.8	08/23	14:04	LNA
Arsenic, Total	0.002	mg/l	.001	1	EPA 200.8	08/23	14:04	LNA
Beryllium, Total	<.005	mg/L	.005	1	EPA 200.7	08/25	10:39	LNA
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	08/23	14:04	LNA
Chromium, Total	0.014	mg/l	.005	1	EPA 200.7	08/25	10:39	LNA
Copper, Total	0.094	mg/l	.01	1	EPA 200.8	08/23	14:04	LNA
Lead, Total	0.02	mg/l	.01	1	EPA 200.8	08/23	14:04	LNA
Mercury, Total	.0005	mg/l	.0001	1	EPA 245.1	08/24	11:01	JAW
Molybdenum, Total	0.04	mg/l	.01	1	EPA 200.7	08/25	10:39	LNA
Nickel, Total	0.012	mg/l	.005	1	EPA 200.8	08/23	14:04	LNA
Selenium, Total	0.005	mg/l	.002	1	EPA 200.8	08/23	14:04	LNA
Silver, Total	<.005	mg/L	.005	1	EPA 200.7	08/22	14:26	LNA
Thallium, Total	<.001	mg/l	.001	1	EPA 200.8	08/23	14:04	LNA
Zinc, Total	0.261	mg/l	.005	1	EPA 200.8	08/23	14:04	LNA
ORGANIC								
ACID COMPOUNDS								
2,4,6-Trichlorophenol	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
2,4-Dichlorophenol	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
2,4-Dimethylphenol	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
2,4-Dinitrophenol	<50	ug/l	50	1	EPA 625	08/24	10:03	MEB
2-Chlorophenol	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
2-Nitrophenol	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
4,6-Dinitro-o-cresol	<50	ug/l	50	1	EPA 625	08/24	10:03	MEB
4-Chloro-3-methylphenol	<20	ug/l	20	1	EPA 625	08/24	10:03	MEB
4-Nitrophenol	<50	ug/l	50	1	EPA 625	08/24	10:03	MEB

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 5







Attention: Amy L. Morriss

## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



RECENTED

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEC 19 2011

DEPI. OF PUBLIC WOFKS

Date of Report:

12/14/11 Project Number: 1159063

Lab ID:

124-11-0032797

Date Collected: 08/18/11 09:04

Collected By:

CLIENT

Date Received:

08/19/11 15:30

Sample Desc: 11-7353 RC (Priority Pollutants, Composite) /NFIVENT

		Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Penta	achlorophenol	<50	 ug/l	50	1	EPA 625	08/24	10:03	MEB
Pheno	•	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
BASE NEUT			-3/ -				/		
	-Trichlorobenzene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
	oiphenylhydrazine (as Azobenzene)	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
	,8-Tetrachlorodibenzodioxin	see comment	ug/l	40	1	EPA 625	08/24	10:03	MEB
	, Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
	)initrotoluene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
•	oronaphthalene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
	-Dichlorobenzidine	<20	ug/l	20	1	EPA 625	08/24	10:03	MEB
	Benzof Luoranthene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
,	omophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
	orophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Acena	phthene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Acena	uphthylene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Anthr	acene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Benzi	dine	<20	ug/l	20	1	EPA 625	08/24	10:03	MEB
Benzo	(a)anthracene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Benzo	o(a)pyrene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Benzo	(ghi)perylene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Benzo	o(k)fluoranthene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Bis(2	-chloroethoxy)methane	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Bis(2	-Chloroethyl) ether	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Bis(2	-Chloroisopropyl) ether	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Bis(2	-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Butyl	benzyl phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Chrys	ene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Di-n-	butyl phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Di-n-	octyl phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Diben	z(a,h)anthracene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 2 of 5







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

FEPTITE TO

DEC 19 7011

Date of Report: Project Number:

12/14/11 1159063

Lab ID:

124-11-0032797 08/18/11 09:04

Date Collected: Collected By:

CLIENT

Date Received:

08/19/11 15:30

DEFT. OF PUBLIC WENTES

Sample Desc: 11-7353 RC (Priority Pollutants, Composite)

INFLUENT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Diethyl phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Dimethyl phthalate	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Fluoranthrene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Fluorene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Hexachlorobenzene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Hexachlorobutadiene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Hexachlorocyclopentadiene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Hexachloroethane	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Indeno(1,2,3-cd)pyrene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Isophorone	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Library Search, Semivolatiles	see comment	ug/l	40	1	EPA 625	08/24	10:03	MEB
N-Nitrosodi-n-propylamine	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
N-Nitrosodimethylamine	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
N-Nitrosodiphenylamine	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Naphthalene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Nitrobenzene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Phenanthrene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
Pyrene	<10	ug/l	10	1	EPA 625	08/24	10:03	MEB
EXTRACTION								
EPA 608 Extraction	Complete		0	0	EPA 608	08/24	06:30	KLE
EPA 625 Extraction	Complete		0	0	EPA 625	08/23	08:00	JLV
PCBS								
PCB-1016	<5	ug/l	5	1	EPA 608	08/26	01:33	TWH
PCB-1221	<5	ug/l	5	1	EPA 608	08/26	01:33	TWH
PCB-1232	<5	ug/L	5	1	EPA 608	08/26	01:33	TWH
PCB-1242	<5	ug/l	5	1	EPA 608	08/26	01:33	TWH
PCB-1248	<5	ug/l	5	1	EPA 608	08/26	01:33	TWH
PCB-1254	<5	ug/L	5	1	EPA 608	08/26	01:33	TWH
PCB-1260	<5	ug/l	5	1	EPA 608	08/26	01:33	TWH
PESTICIDES						•		

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 3 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEC 19 2011

DEFI. OF PUBLIC WORKS

Date of Report:

12/14/11 Project Number: 1159063

Lab ID:

124-11-0032797

Date Collected: 08/18/11 09:04

Date Received:

Collected By: CLIENT

08/19/11 15:30

Sample Desc: 11-7353 RC (Priority Pollutants, Composite)

INFIVENT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
4,4'-DDD	 <.5	 ug/l	.5	1	EPA 608	08/26	01:33	 TWH
4,4'-DDE	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
4,4'-DDT	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Aldrin	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
alpha-BHC	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
beta-BHC	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Chlordane	<1	ug/l	1	1	EPA 608	08/26	01:33	TWH
delta-BHC	<.5	ug/l	.5	1	EPA 608	08/26	01:33	T₩H
Dieldrin	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Endosulfan I	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Endosulfan II	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Endosulfan sulfate	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Endrin	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Endrin aldehyde	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Heptachlor	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Heptachlor Epoxide	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Lindane (Gamma BHC)	<.5	ug/l	.5	1	EPA 608	08/26	01:33	TWH
Toxaphene	<10	ug/l	10	1	EPA 608	08/26	01:33	TWH

#### COMMENTS

01 The semi-volatile extract was analyzed for 2,3,7,8-Tetrachlorodibenzo-p-dioxin. There was no indication of the characteristic ion in the extract.

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 4 of 5







M.J. Reider Associates, Inc.



3rd Otv + PP'S - Final

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033465

Date Collected: Collected By:

08/24/11 08:08

Client

Date Received:

08/24/11 15:40

Sample Desc: Final 11-7502 (Grab, Priority Pollutants) EFFluenT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	08/25	12:03	JCL
Cyanide, Total	0.015	mg/L	.004	1	10204001X	08/25	12:03	JCL
Phenols (4AAP)	0.032	mg/l	.01	1	EPA 420.4	08/25	15:52	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	<5	mg/L	5	1	EPA 1664	08/25	13:00	JLS
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/L	5	1	EPA 1664	08/25	13:00	JLS

Distribution of Reports:

Richard Wolfe

Technical Director

Page 1 of 1

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611



M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033466

Date Collected: 08/23/11 09:40

Client

Collected By: Date Received:

08/24/11 15:40

Sample Desc: Final 11-7539 (Composite, Priority Pollutants)

	Result		Rep.	Dilutn Factor		Test	Test	A
	Result	Unit	Limit 	Factor	Procedure	Date	Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	5.0	mg/l	.5	10	SM 4500P-E	08/25	07:50	ALD
INORGANIC		37				,		
TOTAL								
Antimony, Total	<.005	mg/l	.005	1	EPA 200.8	08/26	13:54	RLS
Arsenic, Total	<.001	mg/L	.001	1	EPA 200.9	08/25	11:25	RLS
Beryllium, Total	<,005	mg/l	.005	1	EPA 200.7	08/25	10:39	LNA
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.7	08/25	10:39	LNA
Chromium, Total	0.005	mg/l	.005	1	EPA 200.7	08/25	10:39	LNA
Copper, Total	0.028	mg/l	.01	1	EPA 200.7	08/25	10:39	LNA
Lead, Total	<.01	mg/l	.01	1	EPA 200.7	08/25	10:39	LNA
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	08/30	13:47	JAW
Molybdenum, Total	0.05	mg/l	.01	1	EPA 200.7	08/25	10:39	LNA
Nickel, Total	0.005	mg/L	.005	1	EPA 200.7	08/25	10:39	LNA
Selenium, Total	<.002	mg/l	.002	1	EPA 200.9	08/25	20:28	RLS
Silver, Total	<.005	mg/l	.005	1	EPA 200.8	08/26	13:54	RLS
Thallium, Total	<.001	mg/l	.001	1	EPA 200.8	08/26	13:54	
Zinc, Total	0.069	mg/l	.005	1	EPA 200.7	08/25	10:39	LNA
ORGANIC		5/ -				,		
ACID COMPOUNDS								
2,4,6-Trichlorophenol	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
2,4-Dichlorophenol	<10	ug/L	10	1	EPA 625	08/29	14:01	MEB
2,4-Dimethylphenol	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
2,4-Dinitrophenol	<50	ug/l	50	1	EPA 625	08/29	14:01	MEB
2-Chlorophenol	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Distribution of Reports:		5,			Reviewed a	nd Appro	oved by:	, ,

Technical Director

Page 1 of 6





M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033466 08/23/11 09:40

Date Collected: Collected By:

Client

Date Received:

08/24/11 15:40

Sample Desc: Final 11-7539 (Composite, Priority Pollutants) & EFIOENT

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
2-Nitrophenol	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
4,6-Dinitro-o-cresol	<50	ug/l	50	1	EPA 625	08/29	14:01	MEB
4-Chloro-3-methylphenol	<20	ug/l	20	1	EPA 625	08/29	14:01	MEB
4-Nitrophenol	<50	ug/l	50	1	EPA 625	08/29	14:01	MEB
Pentachlorophenol	<50	ug/l	50	1	EPA 625	08/29	14:01	MEB
Phenol	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
BASE NEUTRALS								
1,2,4-Trichlorobenzene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
1,2-Diphenylhydrazine (as Azobenzene)	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
2,3,7,8-Tetrachlorodibenzodioxin	see comment	ug/l	40	1	EPA 625	08/29	14:01	MEB
2,4-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
2,6-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
2-Chloronaphthalene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
3,3'-Dichlorobenzidine	<20	ug/l	20	1	EPA 625	08/29	14:01	MEB
3,4-Benzofluoranthene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
4-Bromophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
4-Chlorophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Acenaphthene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Acenaphthylene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Anthracene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Benzidine	<20	ug/l	20	1	EPA 625	08/29	14:01	MEB
Benzo(a)anthracene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Benzo(a)pyrene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Benzo(ghi)perylene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Benzo(k)fluoranthene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Bis(2-chloroethoxy)methane	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB

Distribution of Reports:

Řichard Wolfe Technical Director

Reviewed and Approved by

Page 2 of 6







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033466

Date Collected: 08/23/11 09:40 Collected By:

Client

Date Received:

08/24/11 15:40

Sample Desc: Final 11-7539 (Composite, Priority Pollutants) & FF10ew7

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Bis(2-Chloroethyl) ether	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Bis(2-Chloroisopropyl) ether	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Butyl benzyl phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Chrysene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Di-n-butyl phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Di-n-octyl phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Dibenz(a,h)anthracene	<10	ug/l	10	1	EPA 625	08/29		MEB
Diethyl phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Dimethyl phthalate	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Fluoranthrene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Fluorene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Hexachlorobenzene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Hexachlorobutadiene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Hexachlorocyclopentadiene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Hexachloroethane	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Indeno(1,2,3-cd)pyrene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Isophorone	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Library Search, Semivolatiles	see comment	ug/l	40	1	EPA 625	08/29	14:01	MEB
N-Nitrosodi-n-propylamine	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
N-Nitrosodimethylamine	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
N-Nitrosodiphenylamine	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Naphthalene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Nitrobenzene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Phenanthrene	<10	ug/l	10	1	EPA 625	08/29	14:01	MEB
Pyrene	<10	ug/l	10	1	EPA 625	08/29		
tribution of Penants:	.,•	-3/ -			Reviewed a	,		

Distribution of Reports:

Richard Wolfe Technical Director

Page 3 of 6







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033466

Date Collected:

08/23/11 09:40

Collected By:

Client

Date Received:

08/24/11 15:40

Sample Desc: Final 11-7539 (Composite, Priority Pollutants) & FFL Ue ~ T

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
EXTRACTION	***							
EPA 608 Extraction	Complete		0	0	EPA 608	08/29	14:00	KLE
EPA 625 Extraction	Complete		0	0	EPA 625	08/25	08:00	JLV
PCBS	·					·		
PCB-1016	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PCB-1221	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PCB-1232	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PCB-1242	<5	ug/L	5	1	EPA 608	08/31	02:22	TWH
PCB-1248	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PCB-1254	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PCB-1260	<5	ug/l	5	1	EPA 608	08/31	02:22	TWH
PESTICIDES								
4,4'-DDD	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
4,4'-DDE	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
4,4'-DDT	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Aldrin	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
alpha~BHC	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
beta-BHC	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Chlordane	<1	ug/l	1	1	EPA 608	08/31	02:22	TWH
delta-BHC	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Dieldrin	<.5	ug/L	.5	1	EPA 608	08/31	02:22	TWH
Endosulfan I	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Endosulfan II	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Endosulfan sulfate	<.5	ug/L	.5	1	EPA 608	08/31	02:22	TWH
Endrin	<.5	ug/l	.5	1	EPA 608	08/31	02:22	TWH
Endrin aldehyde	<.5	ug/L	.5	1	EPA 608	08/31	02:22	TWH
Distribution of Reports:					Reviewed a	nd Appro	oved by	A

and stores

Technical Director

Richard Wolfe

Page 4 of 6





M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033467

Date Collected: 08/24/11 08:09

Collected By:

Client

Date Received:

08/24/11 15:40

Sample Desc: Final (4 Grabs/Lab Composite, Priority Pollutants VOCs; collected @ 8:09,

9:55, 13:44 & 15:10)

CFFLUENT

,			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
VOLATILES								
1,1,1-Trichloroethane	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
1,1,2,2-Tetrachloroethane	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
1,1,2-Trichloroethane	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
1,1-Dichloroethane	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
1,1-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
1,2-Dichlorobenzene (o-Dichlorobenzene)	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
1,2-Dichloroethane	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
1,2-Dichloropropane	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
1,3-Dichlorobenzene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
1,4-Dichlorobenzene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/25	10:51	GXF
2-Chloroethylvinyl Ether	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Acrolein	<50	ug/l	50	1	EPA 624	08/25	10:51	GXF
Acrylonitrile	<50	ug/l	50	1	EPA 624	08/25	10:51	GXF
Benzene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Bromoform (Tribromomethane)	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
Bromomethane (Methyl Bromide)	<10	ug/l	10	1	EPA 624	08/25	10:51	GXF
Carbon Tetrachloride	<b>&lt;</b> 5	ug/L	5	1	EPA 624	08/25	10:51	GXF
Chlorobenzene (Monochlorobenzene)	<b>&lt;</b> 5	ug/L	5	1	EPA 624	08/25	10:51	GXF
Chlorodibromomethane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Chloroethane	<10	ug/l	10	1	EPA 624	08/25	10:51	GXF
Chloroform	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
Chloromethane (Methyl Chloride)	<10	ug/L	10	1	EPA 624	08/25	10:51	GXF
cis-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
cis-1,3-Dichloropropylene	<5	ug/L	5	1	EPA 624	08/25	10:51	GXF
Distribution of Reports:					Reviewed a	nd Appro	oved by	A

Richard Wolfe

Technical Director

Page 1 of 2







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

09/02/11

Project Number:

1159298

Lab ID:

124-11-0033467

Date Collected: 08/24/11 08:09

Collected By:

Client

Date Received:

08/24/11 15:40

Sample Desc: Final (4 Grabs/Lab Composite, Priority Pollutants VOCs, collected & 8:09,

9:55, 13:44 & 15:10)

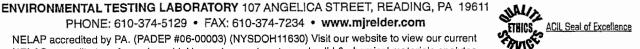
e FFIURNT

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
Dichlorobromomethane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Ethylbenzene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Library Search, Volatiles	see comment	ug/l	15	1	EPA 624	08/25	10:51	GXF
Methylene Chloride	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Tetrachloroethylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Toluene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
trans-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
trans-1,3-Dichloropropylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Trichloroethylene	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Trichlorofluoromethane	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF
Vinyl Chloride	<10	ug/l	10	1	EPA 624	08/25	10:51	GXF
Xylenes (Total)	<5	ug/l	5	1	EPA 624	08/25	10:51	GXF

#### COMMENTS

The volatile organic compound library search did not detect any 01 compounds above the concentration of the internal standards.

Distribution of Reports:


Reviewed and Approved b

Richard Wolfe

Technical Director

Page 2 of 2







M.J. Reider Associates, Inc.



319 Atr + PP - 6h

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11 1158355

Project Number: Lab ID:

128322

Date Collected:

124-11-0031118 08/09/11 08:18

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: 6th 11-7079 (Composite, PPL & Quarterly Testing)

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	4.4	mg/l	.5	10	SM 4500P-E	08/12	09:00	ALD
INORGANIC						·		
TOTAL								
Antimony, Total	<.005	mg∕l	.005	1	EPA 200.8	08/12	13:06	RLS
Arsenic, Total	0.003	mg/l	.001	1	EPA 200.8	08/12	13:06	RLS
Beryllium, Total	<.005	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
Cadmium, Total	<.005	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
Chromium, Total	0.019	mg/L	.005	1	EPA 200.8	08/12	13:06	R∟S
Copper, Total	0.085	mg/l	.01	1	EPA 200.8	08/12	13:06	RLS
Lead, Total	0.03	mg/L	.01	1	EPA 200.8	08/12	13:06	RLS
Mercury, Total	0.0006	mg/L	.0001	1	EPA 245.1	08/16	10:45	JAW
Molybdenum, Total	0.06	mg/l	.01	1	EPA 200.8	08/12	13:06	RLS
Nickel, Total	0.010	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
Selenium, Total	<.002	mg/L	.002	1	EPA 200.9	08/16	08:25	RLS
Silver, Total	<.005	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
Thallium, Total	<.001	mg/l	.001	1	EPA 200.8	08/12	13:06	RLS
Zinc, Total	0.196	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
ORGANIC								
ACID COMPOUNDS								
2,4,6-Trichlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,4-Dichlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,4-Dimethylphenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,4-Dinitrophenol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
2-Chlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2-Nitrophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB ·
4,6-Dinitro-o-cresol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
4-Chloro-3-methylphenol	<20	ug/l	20	1	EPA 625	08/16	07:00	MEB
4-Nitrophenol	<b>&lt;</b> 50	ug/L	50	1	EPA 625	08/16	07:00	MEB

Distribution of Reports:

Richard Wolfe Technical Director

Page 1 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: 08/22/11 Project Number:

1158355

Lab ID: Date Collected:

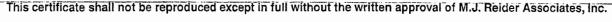
124-11-0031118 08/09/11 08:18

Collected By: CLIENT

08/10/11 15:25 Date Received:

Sample Desc: 6th 11-7079 (Composite, PPL & Quarterly Testing)

		Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
	Pentachlorophenol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
	Phenol	<10	ug/l	10	1	EPA 625	08/16		MEB
ВА	SE NEUTRALS .		•				•		
,	1,2,4-Trichlorobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	1,2-Diphenylhydrazine (as Azobenzene)	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	2,3,7,8-Tetrachlorodibenzodioxin	see comment	ug/L	40	1	EPA 625	08/16	07:00	MEB
	2,4-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	2,6-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	2-Chloronaphthalene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	3,3'-Dichlorobenzidine	<20	ug/l	20	1	EPA 625	08/16	07:00	MEB
	3,4-Benzofluoranthene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	4-Bromophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	4-Chlorophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Acenaphthene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Acenaphthylene	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
	Anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Benzidine	<20	ug/l	20	1	EPA 625	08/16	07:00	MEB
	Benzo(a)anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Benzo(a)pyrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Benzo(ghi)perylene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Benzo(k)fluoranthene	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
	Bis(2-chloroethoxy)methane	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
	Bis(2-Chloroethyl) ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Bis(2-Chloroisopropyl) ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Butyl benzyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Chrysene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Di-n-butyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Di-n-octyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
	Dibenz(a,h)anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB


Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 2 of 5









M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031118

Date Collected:

08/09/11 08:18

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: 6th 11-7079 (Composite, PPL & Quarterly Testing)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Diethyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Dimethyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Fluoranthrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Fluorene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorobutadiene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorocyclopentadiene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachloroethane	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Indeno(1,2,3-cd)pyrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Isophorone	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Library Search, Semivolatiles	see comment	ug/l	40	1	EPA 625	08/16	07:00	MEB
N-Nitrosodi-n-propylamine	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
N-Nitrosodimethylamine	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
N-Nitrosodiphenylamine	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Naphthalene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Nitrobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Phenanthrene	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
Pyrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
EXTRACTION								
EPA 608 Extraction	Complete		0	0	EPA 608	08/11	09:00	KLE
EPA 625 Extraction	Complete		0	0	EPA 625	08/15	07:00	JLV
PCBS								
PCB-1016	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1221	<5	ug/L	5	1	EPA 608	08/13	02:55	TWH
PCB-1232 .	<b>&lt;</b> 5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1242	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1248	<b>&lt;</b> 5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1254	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1260	<b>&lt;</b> 5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PESTICIDES								

Distribution of Reports:

Richard Wolfe

Reviewed and Approved by

Technical Director

Page 3 of 5

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





**ACIL Seal of Excellence** 



M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031118

Date Collected:

08/09/11 08:18

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: 6th 11-7079 (Composite, PPL & Quarterly Testing)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
						00/47	02.55	~
4,41-DDD	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
4,4'-DDE	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
4,4'-DDT	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
.Aldrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
alpha-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
beta-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Chlordane	<1	ug/l	1	1	EPA 608	08/13	02:55	TWH
delta-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Dieldrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endosulfan I	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endosulfan II	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endosulfan sulfate	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endrin aldehyde	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Heptachlor	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Heptachlor Epoxide	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Lindane (Gamma BHC)	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Toxaphene	. <10	ug/l	10	1	EPA 608	08/13	02:55	TWH

#### COMMENTS

O1 The semi-volatile extract was analyzed for 2,3,7,8-Tetrachlorodibenzo-p-dioxin. There was no indication of the characteristic ion in the extract.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 4 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031119

Date Collected:

08/10/11 08:15

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: 6th 11-7078 (Grab, PPL & Quarterly Testing)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/L	.004	1	DEP 1	08/12	15:27	JCL
Cyanide, Total	0.008	mg/L	.004	1	10204001X	08/12	15:27	JCL
Phenols (4AAP)	0.092	mg/L	.01	1	EPA 420.4	08/11	11:38	JCL
O&G/TPH								
GENERAL								
Oil and Grease	19	mg/l	5	1	EPA 1664	08/11	13:00	JL\$

#### COMMENTS

01 The Phenols matrix spike was low indicating possible sample matrix interference.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

0

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

08/22/11

Project Number:

1158354

Lab ID:

124-11-0031120

Date Collected:

08/10/11 08:15 CLIENT

Collected By:

Date Received: 08/10/11 15:25

Sample Desc: 6th (Lab Composite of 4 Grabs, PPL VOAs)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC								
VOLATILES								
1,1,1-Trichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1,2,2-Tetrachloroethane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1,2-Trichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1-Dichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichlorobenzene (o-Dichlorobenzene)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichloropropane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,3-Dichlorobenzene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,4-Dichlorobenzene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
2-Chloroethylvinyl Ether	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Acrolein	<50	ug/l	50	1	EPA 624	08/11	08:31	GXF
Acrylonitrile	<50	ug/l	50	1	EPA 624	08/11	08:31	GXF
Benzene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Bromoform (Tribromomethane)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Bromomethane (Methyl Bromide)	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Carbon Tetrachloride	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chlorobenzene (Monochlorobenzene)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chlorodibromomethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chloroethane	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Chloroform	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chloromethane (Methyl Chloride)	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
cis-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
cis-1,3-Dichloropropylene	<5	ug/L	5	1	EPA 624	08/11	08:31	GXF
Dichlorobromomethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Ethylbenzene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Library Search, Volatiles	see comment	ug/l	15	1	EPA 624	08/11	08:31	GXF
Methylene Chloride	<5	ug/L	5	1	EPA 624	08/11	08:31	GXF

Distribution of Reports:

Richard Wolfe

Technical Director

Page 1 of 2

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611



M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158354

Lab ID:

124-11-0031120

Date Collected:

08/10/11 08:15

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: 6th (Lab Composite of 4 Grabs, PPL VOAs)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Tetrachloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Toluene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
trans-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
trans-1,3-Dichloropropylene	<5	ug/L	5	1	EPA 624	08/11	08:31	GXF
Trichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Trichlorofluoromethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Vinyl Chloride	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Xylenes (Total)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF

#### COMMENTS

01 The Grab portions of this sample were collected at 08:15, 10:26, 13:21 & 15:01 on 08/10/11)

02 The VOC library search tentatively identified 1-Propanol, 2-Propanol, Acetone, Carbon disulfide & Ethanol.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 2 of 2







M.J. Reider Associates, Inc.



3rd Other + PP'S Gin

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031115

Date Collected:

08/09/11 10:48

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC 11-7084 (Composite, PPL & Quarterly Testing)

CHEMISTRY COLORMETRIC Phosphorus as P, Total 4.4 mg/l .5 10 SM 4500P-E 08/12 09:00 ALD INORGANIC TOTAL Antimony, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Arsenic, Total <.001 mg/l .001 1 EPA 200.8 08/12 13:06 RLS Beryllium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Cadmium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Cadmium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Chromium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Copper, Total <.005 mg/l .001 1 EPA 200.8 08/12 13:06 RLS Copper, Total <.001 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Mercury, Total <.001 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Mercury, Total <.001 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Mickel, Total <.001 mg/l .001 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.006 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.006 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.006 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.007 mg/l .007 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.008 mg/l .008 1 EP		Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Phosphorus as P, Total   4.4   mg/l   5.5   10   SM 4500P-E   08/12   09:00   ALD INORGANIC	CHEMISTRY	,							
INORGANIC   TOTAL   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   Arsenic, Total   C.001   mg/L   .001   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .01   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.001   mg/L   .01   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.001   mg/L   .001   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total   C.005   mg/L   .005   1   EPA 200.8   08/12   13:06   RLS   REYLlium, Total	COLORMETRIC								
INORGANIC   TOTAL	Phosphorus as P, Total	4.4	mg/l	.5	10	SM 4500P-E	08/12	09:00	ALD
Antimony, Total	INORGANIC						·		
Arsenic, Total	TOTAL								
Beryllium, Total	Antimony, Total	<.005	mg/l	.005	1	EPA 200.8	08/12	13:06	RLS
Cadmium, Total	Arsenic, Total	<.001	mg/L	.001	1	EPA 200.8	08/12	13:06	RLS
Chromium, Total	Beryllium, Total	<.005	mg/l	.005	1	EPA 200.8	08/12	13:06	RLS
Copper, Total 0.075 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Lead, Total <.01 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Mercury, Total <.0001 mg/l .0001 1 EPA 245.1 08/16 10:45 JAW Molybdenum, Total 0.01 mg/l .01 1 EPA 200.8 08/12 13:06 RLS Nickel, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Selenium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Silver, Total <.002 mg/l .002 1 EPA 200.8 08/12 13:06 RLS Silver, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS Thallium, Total <.005 mg/l .005 1 EPA 200.8 08/12 13:06 RLS ORGANIC ACID COMPOUNDS  2,4,6-Trichlorophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	Cadmium, Total	<.005	mg/l	.005	1	EPA 200.8	08/12	13:06	RLS
Copper, Total       0.075       mg/l       .01       1       EPA 200.8       08/12       13:06       RLS         Lead, Total       <.01	Chromium, Total	<.005	mg/l	.005	1	EPA 200.8	08/12	13:06	RLS
Mercury, Total       <.0001	Copper, Total	0.075		.01	1	EPA 200.8	08/12	13:06	RLS
Molybdenum, Total       0.01       mg/L       .01       1       EPA 200.8       08/12       13:06       RLS         Nickel, Total       <.005	Lead, Total	<.01	mg/L	.01	1	EPA 200.8	08/12	13:06	RLS
Nickel, Total	Mercury, Total	<.0001	mg/L	.0001	1	EPA 245.1	08/16	10:45	JAW
Selenium, Total       <.002	Molybdenum, Total	0.01	mg/L	.01	1	EPA 200.8	08/12	13:06	RLS
Selenium, Total       <.002	Nickel, Total	<.005	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
Thallium, Total <.001 mg/l .001 1 EPA 200.8 08/12 13:06 RLS Zinc, Total 0.162 mg/l .005 1 EPA 200.8 08/12 13:06 RLS ORGANIC ACID COMPOUNDS 2,4,6-Trichlorophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB		<.002	mg/L	.002	1	EPA 200.8	08/12	13:06	RLS
Zinc, Total   0.162   mg/l   .005   1   EPA 200.8   08/12   13:06   RLS	Silver, Total	<.005	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
ORGANIC  ACID COMPOUNDS  2,4,6-Trichlorophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	Thallium, Total	<.001	mg/l	.001	1	EPA 200.8	08/12	13:06	RLS
ACID COMPOUNDS  2,4,6-Trichlorophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	Zinc, Total	0.162	mg/L	.005	1	EPA 200.8	08/12	13:06	RLS
2,4,6-Trichlorophenol <10 ug/L 10 1 EPA 625 08/16 07:00 MEB	ORGANIC								
	ACID COMPOUNDS				•				
2 4-Dichlorophenol <10 ug/L 10 1 EPA 625 08/16 07:00 MER	2,4,6-Trichlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
274 profite ag/ 10 11 217 225 33/10 01:00 1125	2,4-Dichlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,4-Dimethylphenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	2,4-Dimethylphenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,4-Dinitrophenol <50 ug/l 50 1 EPA 625 08/16 07:00 MEB	2,4-Dinitrophenol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
2-Chlorophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	2-Chlorophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2-Nitrophenol <10 ug/l 10 1 EPA 625 08/16 07:00 MEB	2-Nitrophenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
4,6-Dinitro-o-cresol <50 ug/l 50 1 EPA 625 08/16 07:00 MEB	4,6-Dinitro-o-cresol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
4-Chloro-3-methylphenol <20 ug/l 20 1 EPA 625 08/16 07:00 MEB	4-Chloro-3-methylphenol	. <20	ug/l	20	1	EPA 625	08/16	07:00	MEB
4-Nitrophenol <50 ug/l 50 1 EPA 625 08/16 07:00 MEB	4-Nitrophenol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB


Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 5









M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031115

Date Collected:

08/09/11 10:48

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC 11-7084 (Composite, PPL & Quarterly Testing)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
	450							
Pentachlorophenol	<50	ug/l	50	1	EPA 625	08/16	07:00	MEB
Phenol	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
BASE NEUTRALS		4.						
1,2,4-Trichlorobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
1,2-Diphenylhydrazine (as Azobenzene)	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,3,7,8-Tetrachlorodibenzodioxin	see comment	ug/l	40	1	EPA 625	08/16	07:00	MEB
2,4-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2,6-Dinitrotoluene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
2-Chloronaphthalene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
3,3'-Dichlorobenzidine	<20	ug/l	20	1	EPA 625	08/16	07:00	MEB
3,4-Benzofluoranthene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
4-Bromophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
4-Chlorophenyl phenyl ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Acenaphthene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Acenaphthylene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Benzidine	<20	ug/l	20	1	EPA 625	08/16	07:00	MEB
Benzo(a)anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Benzo(a)pyrene	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
Benzo(ghi)perylene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Benzo(k)fluoranthene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Bis(2-chloroethoxy)methane	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Bis(2-Chloroethyl) ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Bis(2-Chloroisopropyl) ether	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Butyl benzyl phthalate	<10	ug/l ug/l	10	1	EPA 625	08/16	07:00	MEB
Chrysene	<10	ug/l	10	1	EPA 625	08/16	07:00	
•	<10		-	•		•		MEB
Di-n-butyl phthalate	<10	ug/l	10 10	1 1	EPA 625	08/16	07:00	MEB
Di-n-octyl phthalate		ug/l		•	EPA 625	08/16	07:00	MEB
Dibenz(a,h)anthracene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 2 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031115

Date Collected:

08/09/11 10:48

Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC 11-7084 (Composite, PPL & Quarterly Testing) GRIT

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
Diethyl phthalate	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Dimethyl phthalate	34	ug/l	10	2	EPA 625	08/16		MEB
Fluoranthrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Fluorene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorobutadiene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachlorocyclopentadiene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Hexachloroethane	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Indeno(1,2,3-cd)pyrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Isophorone	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Library Search, Semivolatiles	see comment	ug/l	40	1	EPA 625	08/16	07:00	MEB
N-Nitrosodi-n-propylamine	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
N-Nitrosodimethy Lamine	<10	ug/L	10	1	EPA 625	08/16	07:00	MEB
N-Nitrosodiphenylamine	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Naphthalene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Nitrobenzene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Phenanthrene	<10	ug/l	10	1	EPA 625	08/16	07:00	MEB
Pyrene	. <10	ug/L	10	1	EPA 625	08/16	07:00	MEB
EXTRACTION						•		
EPA 608 Extraction	Complete		0	0	EPA 608	08/11	09:00	KLE
EPA 625 Extraction	Complete		0	0	EPA 625	08/15	07:00	JLV
PCBS						•		
PCB-1016	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1221	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1232	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1242	<5	ug/L	5	1	EPA 608	08/13	02:55	TWH
PCB-1248	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PCB-1254	<b>&lt;</b> 5	ug/L	5	1	EPA 608	08/13	02:55	TWH
PCB-1260	<5	ug/l	5	1	EPA 608	08/13	02:55	TWH
PESTICIDES						·		

Distribution of Reports:

Richard Wolfe

Technical Director

Reviewed and Approved by

Page 3 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031115 08/09/11 10:48

Date Collected: Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC 11-7084 (Composite, PPL & Quarterly Testing)

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
4,4'-DDD	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
4,4'-DDE	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
4,4'-DDT	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Aldrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
alpha-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
beta-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Chlordane	<1	ug/l	1	1	EPA 608	08/13	02:55	TWH
delta-BHC	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
Dieldrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endosulfan I	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
Endosulfan II	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endosulfan sulfate	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
Endrin	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Endrin aldehyde	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Heptachlor	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Heptachlor Epoxide	<.5	ug/l	.5	1	EPA 608	08/13	02:55	TWH
Lindane (Gamma BHC)	<.5	ug/l	.5	1	EPA 608	08/13	02:55	T₩H
Toxaphene	<10	ug/l	10	1	EPA 608	08/13	02:55	TWH

#### COMMENTS

01 The semi-volatile extract was analyzed for 2,3,7,8-Tetrachlorodibenzo-p-dioxin. There was no indication of the characteristic ion in the extract.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 4 of 5







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158355

Lab ID:

124-11-0031116 08/10/11 10:41

Date Collected: Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC 11-7083 (Grab, PPL & Quarterly Testing)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	08/12	15:27	JCL
Cyanide, Total	0.004	mg/l	.004	1	10204001X	08/12	15:27	JCL
Phenols (4AAP)	0.084	mg/L	.01	1	EPA 420.4	08/11	11:38	JCL
O&G/TPH								
GENERAL								
Oil and Grease	23	mg/L	5	1	EPA 1664	08/11	13:00	JLS

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158354

Lab ID:

124-11-0031117 08/10/11 08:35

Date Collected: Collected By:

CLIENT

Date Received:

08/10/11 15:25

Sample Desc: GC (Lab Composite of 4 Grabs, PPL VOAs)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analya+
•	resutt				rrocedure			Analyst
ORGANIC								
VOLATILES								
1,1,1-Trichloroethane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1,2,2-Tetrachloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1,2-Trichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1-Dichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,1-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichlorobenzene (o-Dichlorobenzene)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichloroethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,2-Dichloropropane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,3-Dichlorobenzene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
1,4-Dichlorobenzene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
2-Chloroethylvinyl Ether	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Acrolein	<50	ug/l	50	1	EPA 624	08/11	08:31	GXF
. Acrylonitrile	<50	ug/l	50	1	EPA 624	08/11	08:31	GXF
Benzene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Bromoform (Tribromomethane)	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Bromomethane (Methyl Bromide)	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Carbon Tetrachloride	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chlorobenzene (Monochlorobenzene)	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chlorodibromomethane	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chloroethane	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Chloroform	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Chloromethane (Methyl Chloride)	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
cis-1,2-Dichloroethylene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
cis-1,3-Dichloropropylene	<5	ug/L	5	1	EPA 624	08/11	08:31	GXF
Dichlorobromomethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Ethylbenzene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Library Search, Volatiles	see comment	ug/l	15	1	EPA 624	08/11	08:31	GXF
Methylene Chloride	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 2







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

08/22/11

Project Number:

1158354

Lab ID:

124-11-0031117

Date Collected: Collected By: 08/10/11 08:35

Date Received:

CLIENT 08/10/11 15:25

Sample Desc: GC (Lab Composite of 4 Grabs, PPL VOAs)

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
Tetrachloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Toluene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
trans-1,2-Dichloroethylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
trans-1,3-Dichloropropylene	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Trichloroethylene	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Trichlorofluoromethane	<5	ug/l	5	1	EPA 624	08/11	08:31	GXF
Vinyl Chloride	<10	ug/l	10	1	EPA 624	08/11	08:31	GXF
Xylenes (Total)	<b>&lt;</b> 5	ug/l	5	1	EPA 624	08/11	08:31	GXF

#### COMMENTS

01 The Grab portions of this sample were collected at 08:35, 10:41, 13:41 & 15:18 on 08/10/11)

02 The VOC library search tentatively identified 1-Propanol, 2-Propanol, Acetone & Isobutyl alcohol.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 2 of 2







#### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



3rdON + PPS - BIOSOLIDS

Attention:

Amy L. Morriss Reported to: City of Reading WWTP

> c/o City Hall 815 Washington St. Reading PA 19601

Date of Repo
Project Numb
Lab ID:
Account Rep:
Date Date Date

Date of Report: 07/26/11 Project Number: 1155051

0124-11-0025714 Richard Wolfe Date Received: 07/06/11

07/05/11 Date Collected: Time Collected: 08:35 Collected By: Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

	Detection					Test	t	
	Results	Unit	Limit	Procedure	Date	Time	Analyst	
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<1.83	* mg/kg	1.83	DEP 1	07/08	13:36	jcl	
Cyanide, Total	5.0	* mg/kg	1.8	10204001X	07/08	13:36	jcl	
Phenols (4AAP)	95.9	* mg/kg	9.13	EPA 420.4	07/12	12:14	jcl	
Phosphorus as P, Total	20000	* mg/kg	571	SM 4500P-E	07/11	07:09	ald	
NITROGENS								
Nitrogen, Ammonia	10000	* mg/kg	460	EPA 350.1	07/12	16:38	jcl	
HER					·		-	
Biochemical Oxygen Demand	70800	* mg/kg	913	SM 5210B	07/07	16:00	EMW	
PHYSICAL		• •			·			
Visual Color	See Comment	color	2	VISUAL	07/25	13:50	whc	
RESIDUES					·			
Total Solids	21.9	%	1	SM 2540G	07/09	10:30	eps	
INORGANIC					·			
TOTAL								
Antimony, Total	<22.8	* mg/kg	22.8	SW846 6010	07/12	11:42	lna	
Arsenic, Total	2	* mg/kg	0.4	EPA 200.9	07/13	02:00	rls	
Beryllium, Total	<2.28	* mg/kg	2.28	SW846 6010	07/12	11:42	lna	
Cadmium, Total	4	* mg/kg	2	sw846 6010	07/12	11:42	lna	
Chromium, Total	124	* mg/kg	2.28	sw846 6010	07/12	11:42	lna	
Copper, Total	653	* mg/kg	4.57	SW846 6010	07/12	11:42	lna	
Lead, Total	140	* mg/kg	4.6	sw846 6010	07/12	11:42	lna	
Mercury, Total	4	* mg/kg	0.9	SW846 7471	07/14	14:14	jaw	
Molybdenum, Total	73	* mg/kg	4.6	SW846 6010	07/12	11:42	lna	
Nickel, Total	64.8	* mg/kg	2.28	SW846 6010	07/12	11:42	lna	

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By:

Technical Director

Page 1 of 8









#### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEPI. OF PUBLIC WORKSDate Received:

Date of Report: Project Number: 07/26/11 1155051

Lab ID:

0124-11-0025714

Richard Wolfe

Date Collected:

07/06/11

07/05/11 08:35

Collected By:

Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

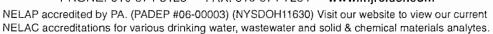
	Results	Unit	Detectio Limit	Procedure	Test Date	Test Time	Analyst
Selenium, Total	6.8	 * mg/kg	0.91	EPA 200.9	07/12	10:15	rls
Silver, Total	11	* mg/kg	2.3	sw846 6010	07/07	11:54	lna
Titanium, Total	73	* mg/kg	4.6	SW846 6010	07/12		
Zinc, Total	1650	* mg/kg	2.28	sw846 6010	07/12		
O&G/TPH		9,9		00.0	.,		
GENERAL							
N-Hexane Extractable Material (O&G)	45300	* mg/kg	1140	EPA 1664	07/12	08:30	ils
Silica Gel Treated N-Hexane Extract(TPH)	18500	* mg/kg	1140	EPA 1664	07/13	13:00	ils
( IIC		37 3			1		
ACID COMPOUNDS							
2,4,6-Trichlorophenol	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
2,4-Dichlorophenol	<22.8	* mg/kg	22.8	sw846 8270	07/ <b>1</b> 5	11:20	meb
2,4-Dimethylphenol	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
2,4-Dinitrophenol	<114	* mg/kg	114	sw846 8270	07/15	11:20	meb
2-Chlorophenol	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
2-Nitrophenol	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
4,6-Dinitro-o-cresol	<114	* mg/kg	114	SW846 8270	07/15	11:20	meb
4-Chloro-3-methylphenol	<45.7	* mg/kg	45.7	sw846 8270	07/15	11:20	meb
4-Nitrophenol	<114	* mg/kg	114	SW846 8270	07/15	11:20	meb
Pentachlorophenol	<114	* mg/kg	114	SW846 8270	07/15	11:20	meb
Phenol	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
BASE NEUTRALS							
1,2,4-Trichlorobenzene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
1,2-Dichlorobenzene (o-Dichlorobenzene)	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
1,2-Diphenylhydrazine (as Azobenzene)	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
1,3-Dichlorobenzene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc.

Reviewed and Approved By


Technical Director


Page 2 of 8

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611 PHONE: 610-374-5129 • FAX: 610-374-7234 • www.mjreider.com







M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP c/o City Hall

815 Washington St. Reading PA 19601 JUL 28 2011
DEPT. OF PUBLIC WORKS

Date of Report: 07/26/11 Project Number: 1155051

Lab ID: 0124-11-0025714

Account Rep: Richard Wolfe
Date Received: 07/06/11

Date Collected: 07/05/11
Time Collected: 08:35
Collected By: Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

			Detectio	חס	Test	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
1,4-Dichlorobenzene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
2,4-Dinitrotoluene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
2,6-Dinitrotoluene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
2-Chloronaphthalene	<22.8	∗ mg/kg	22.8	SW846 8270	07/15	11:20	meb
3,3'-Dichlorobenzidine	<45.7	* mg/kg	45.7	SW846 8270	07/15	11:20	meb
3,4-Benzofluoranthene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
4-Bromophenyl phenyl ether	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
4-Chlorophenyl phenyl ether	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
\cenaphthene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Acenaphthylene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Anthracene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Benzidine	<45.7	* mg/kg	45.7	SW846 8270	07/15	11:20	meb
Benzo(a)anthracene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Benzo(a)pyrene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Benzo(ghi)perylene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Benzo(k)fluoranthene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Bis(2-chloroethoxy)methane	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Bis(2-Chloroethyl) ether	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Bis(2-Chloroisopropyl) ether	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Bis(2-Ethylhexyl) phthalate	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Butyl benzyl phthalate	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Chrysene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Di-n-butyl phthalate	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Di-n-octyl phthalate	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Dibenz(a,h)anthracene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Diethyl phthalate	<22.8	* mg/kg	22.8	sw846 <b>827</b> 0	07/15	11:20	meb

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc.

Reviewed and Approved By

Richard Wolfe

Technical Director

Page 3 of 8

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





NELAC accreditations for various drinking water, wastewater and solid & chemical materials analytes.



M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

JUL 28 2011 DEPT. OF PUBLIC WORKS

Date of Report: 07/26/11 Project Number: 1155051

Lab ID: 0124-11-0025714 Account Rep: Richard Wolfe

07/06/11 Date Received: Date Collected: 07/05/11 08:35 Time Collected: Collected By: Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

			Detection	n	Test T	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
Dimethyl phthalate	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Fluoranthrene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Fluorene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Hexachlorobenzene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Hexachlorobutadiene	<22.8	* mg/kg	22.8	s₩846 8270	07/15	11:20	meb
Hexachlorocyclopentadiene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Hexachloroethane	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Indeno(1,2,3-cd)pyrene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
sophorone	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
N-Nitrosodi-n-propylamine	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
N-Nitrosodimethylamine	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
N-Nitrosodiphenylamine	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Naphthalene	<22.8	* mg/kg	22.8	sw846 8270	07/15	11:20	meb
Nitrobenzene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Phenanthrene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
Pyrene	<22.8	* mg/kg	22.8	SW846 8270	07/15	11:20	meb
EXTRACTION							
SW846 8081 Extraction	Complete		0	sw846 8081	07/13	10:00	kle
SW846 8270 Extraction	Complete		0	sw846 8270	07/12	12:30	meb
PCBS							
PCB-1016	<0.913	★ mg/kg	0.913	sw846 8082	07/16	09:26	twh
PCB-1221	<0.913	* mg/kg	0.913	sw846 8082	07/16	09:26	twh
PCB-1232	<0.913	∗ mg/kg	0.913	SW846 8082	07/16	09:26	twh
PCB-1242	<0.913	* mg/kg	0.913	sw846 8082	07/16	09:26	twh
PCB-1248	<0.913	* mg/kg	0.913	sw846 8082	07/16	09:26	twh
PCB-1254	<0.913	* mg/kg	0.913	SW846 8082	07/16	09:26	twh

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc.

Reviewed and Approved By

Richard Wolfe

Technical Director

Page 4 of 8

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611

PHONE: 610-374-5129 • FAX: 610-374-7234 • www.mjreider.com





#### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEFT - UT PODELO WORKS

Date of Report: 07/26/11

Project Number: 1155051 Lab ID:

0124-11-0025714 Account Rep: Richard Wolfe

Date Received: 07/06/11 07/05/11 Date Collected: Time Collected: 08:35

Collected By:

Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

			Detectio	ก	Test Tes	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
PCB-1260 PESTICIDES	<0.913	* mg/kg	0.913	sw846 8082	07/16	09:26	twh
4,4'-DDD	<0.913	* mg/kg	0.913	sw846 8081	07/16	09:26	twh
4,4'-DDE	<0.913	* mg/kg	0.913	SW846 8081	07/16	09:26	
4,4'-DDT	<0.913	* mg/kg	0.913	SW846 8081	07/16	09:26	
Aldrin	<0.913	* mg/kg	0.913	SW846 8081	07/16	09:26	twh
alpha-BHC	<0.913	* mg/kg	0.913	sw846 8081	07/16	09:26	twh
beta-BHC	<0.913	* mg/kg	0.913	sw846 8081	07/16	09:26	twh
hlordane	<2.28	* mg/kg	2.28	sw846 8081	•	09:26	
delta-BHC	<0.913	* mg/kg	0.913	sw846 8081	,	09:26	twh
Dieldrin	<0.913	* mg/kg	0.913	sw846 8081	07/16	09:26	twh
Endosulfan I	<0.913	* mg/kg	0.913	sw846 8081	,	09:26	twh
Endosulfan II	<0.913	* mg/kg	0.913	SW846 8081	07/16		twh
Endosulfan sulfate	<0.913	* mg/kg	0.913	SW846 8081	07/16		twh
Endrin	<0.913	* mg/kg	0.913	SW846 8081	07/16		twh
Endrin aldehyde	<0.913	* mg/kg	0.913	sw846 8081	07/16		twh
Heptachlor	<0.913	* mg/kg	0.913	SW846 8081	07/16		twh
Heptachlor Epoxide	<0.913	* mg/kg	0.913	SW846 8081	07/16	09:26	twh
Lindane (Gamma BHC)	<0.913	* mg/kg	0.913	sw846 8081	07/16	09:26	twh
Toxaphene	<4.57	* mg/kg	4.57	sw846 8081	07/16	09:26	twh
VOLATILES					,		
1,1,1-Trichloroethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
1,1,2,2-Tetrachloroethane	<110	* ug/kg	110	sw846 8260	07/13	08:46	gxf
1,1,2-Trichloroethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
1,1-Dichloroethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
1,1-Dichloroethylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By:

Technical Director

Page 5 of 8







M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 JUL 2 8 2011

JUL 2 Lab ID:
Account Rep:
DEPT. OF PUBLIC WORKS

Date of Report: 07/26/11 Project Number: 1155051

Project Number: 1155051 Lab ID: 0124-11-0025714

Account Rep: Richard Wolfe
Date Received: 07/06/11
Date Collected: 07/05/11
Time Collected: 08:35

Collected By: Client

Sample Description: Belt Press Sludge, 11-5911

* Results expressed as Dry Weight

				on .	Test	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
1,2-Dichloroethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
1,2-Dichloropropane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
2-Chloroethylvinyl Ether	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Acrolein	<1100	* ug/kg	1100	SW846 8260	07/13	08:46	gxf
Acrylonitrile	<1100	* ug/kg	1100	sw846 8260	07/13	08:46	gxf
Benzene	<110	* ug/kg	110	sw846 8260	07/13	08:46	gxf
Bromoform (Tribromomethane)	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Bromomethane (Methyl Bromide)	<230	* ug/kg	230	SW846 8260	07/13	08:46	gxf
Jarbon Tetrachloride	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Chlorobenzene (Monochlorobenzene)	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Chlorodibromomethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Chloroethane	<230	* ug/kg	230	sw846 8260	07/13	08:46	gxf
Chloroform	<110	* ug/kg	110	sw846 8260	07/13	08:46	gxf
Chloromethane (Methyl Chloride)	<230	* ug/kg	230	SW846 8260	07/13	08:46	gxf
cis-1,2-Dichloroethylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
cis-1,3-Dichloropropylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Dichlorobromomethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Ethylbenzene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Library Search, Volatiles	See Comment	ug/kg	30	SW846 8260	07/13	08:46	gxf
Methylene Chloride	<110	* ug/kg	110	sw846 8260	07/13	08:46	gxf
Tetrachloroethylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Toluene	260	* ug/kg	110	sw846 8260	07/13	08:46	gxf
trans-1,2-Dichloroethylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
trans-1,3-Dichloropropylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Trichloroethylene	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf
Trichlorofluoromethane	<110	* ug/kg	110	SW846 8260	07/13	08:46	gxf

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc.

Reviewed and Approved By

Richard Wolfe Technical Director

Page 6 of 8







Attention: Amy L. Morriss

# CERTIFICATE OF ANALYSIS

M.J. Reider Associates, Inc.



BEST. OF PUBLIC WORKS

DEC 22 7011

Date of Report: 12/19/11

4th OTR

Project Number: 1168070 Lab ID: 124-1

124-11-0047181

Date Collected:

Date Received:

11/21/11 08:45

Collected By:

CLIENT 11/23/11 15:10

Reported To: City of Reading WWTP c/o City Hall 815 Washington St.

Reading PA 19601

Sample Desc: Raw 11-10359 (Quarterly, Composite) ノル じんさゃ ア

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	6.4	mg/l	.5	10	SM 4500P-E	11/29	09:40	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/L	.001	1	EPA 200.8	11/28	13:36	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Chromium, Total	0.013	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Copper, Total	0.061	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Lead, Total	0.01	mg/l	.01	1	EPA 200.7	11/28	14:42	LNA
Mercury, Total	0.0001	mg/l	.0001	1	EPA 245.1	12/16	11:30	JAW
Molybdenum, Total	0.04	mg/l	.01	1	EPA 200.7	11/28	14:42	LNA
Nickel, Total	0.007	mg/L	.005	1	EPA 200.7	11/28	14:42	LNA
Silver, Total	<.005	mg/l	.005	1	EPA 200.8	11/28	13:36	RLS
Zinc, Total	0.252	mg/l	.05	1	EPA 200.7	11/28	14:42	LNA
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	11/30	17:44	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	11/28	07:00	MEB

#### COMMENTS

O1 One or more semi-volatile compounds had high recovery in the CCV but none of these compounds were detected in this sample above the laboratory's reporting limit.

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

MECEVED

DEC 122011

DEPT. OF PUBLIC WORKS

Date of Report: 12/08/11

Lab ID:

Project Number: 1168070 124-11-0047179

Date Collected: 11/22/11 08:46

Collected By:

Client

Date Received:

11/23/11 15:10

Sample Desc: Raw 11-10360 (Quarterly, Grab) / NFIVENT

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	11/29	14:17	JCL
Cyanide, Total	0.007	mg/l	.004	1	10204001X	11/29	14:17	JCL
Phenols (4AAP)	0.089	mg/l	.01	1	EPA 420.4	11/29	12:40	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	20	mg/l	5	1	EPA 1664	11/28	10:00	WXC
Silica Gel Treated N-Hexane Extract(TPH	> <5	mg/l	5	1	EPA 1664	11/28	14:15	WXC

Distribution of Reports:

Reviewed and Approved by

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



4th Otr- Eff+ Inf

Attention: Amy L. Morriss  Reported To: City of Reading WWTP c/o City Hall 815 Washington St. Reading PA 19601	OEC 2.	1000 A101 5 July 1000	<b>(</b> (\$	Date of I Project I Lab ID: Date Col Collected Date Reco	Number: Lected: d By:	12/16/11 1168070 124-11-004718 11/21/11 09:25 CLIENT 11/23/11 15:10		
Sample Desc: Final 11-10371 (Quarterly,	Composite) EFF  Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	3.26	mg/l	.25	5	SM 4500P-E	11/29	09:40	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/l	.001	1	EPA 200.8	11/28	13:36	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Chromium, Total	<.005	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Copper, Total	0.012	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Lead, Total	<.01	mg/L	.01	1	EPA 200.7	11/28	14:42	LNA
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	12/16	11:30	JAW
Molybdenum, Total	0.01	mg/l	.01	1	EPA 200.7	11/28	14:42	LNA
Nickel, Total	<.005	mg/l	.005	1	EPA 200.7	11/28	14:42	LNA
Silver, Total	<.005	mg/l	.005	1	EPA 200.8	11/28	13:36	RLS
Zinc, Total	0.070	mg/l	.05	1	EPA 200.7	11/28	14:42	LNA
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	ug/l	10	1	EPA 625	11/30	17:44	MEB	
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	11/28	07:00	MEB

#### COMMENTS

O1 One or more semi-volatile compounds had high recovery in the CCV but none of these compounds were detected in this sample above the laboratory's reporting limit.

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



#### RECEIVED

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEC 12 2011

DEPT. OF PUBLIC WORKS

Date of Report: 12/08/11

Project Number: 1168070

Lab ID:

124-11-0047178

Date Collected: 11/22/11 08:08

Collected By:

Client

Date Received:

11/23/11 15:10

Sample Desc: Final 11-10350 (Quarterly, Grab) & FFIURNI

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY COLORMETRIC								
Cyanide, Free	0.004	mg/L	.004	1	DEP 1	11/29	14:17	JCL
Cyanide, Total	0.006	mg/L	.004	1	10204001X	11/29	14:17	JCL
Phenols (4AAP)	0.026	mg/L	.01	1	EPA 420.4	11/29	12:40	JCL
O&G/TPH								
GENERAL								
N-Hexane Extractable Material (O&G)	<5	mg/l	5	1	EPA 1664	11/28	10:00	WXC
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	11/28	14:15	MXC

Distribution of Reports:

Reviewed and Approved by:

Řichard Wolfe Technical Director

Page 1 of 1







Attention: Amy L. Morriss

Reported To: City of Reading WWTP

# CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



4th GTR

Date of Report: 12/21/11

Project Number: 1170051

Lab ID: 124-11-0049581

Date Collected: 12/12/11 10:40 Collected By: CLIENT

Date Received: 12/14/11 15:30

JAN 03 7017

Sample Desc: 6th 11-11026 (Composite)

c/o City Hall

815 Washington St. Reading PA 19601

	Result 	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	5.0	mg/l	.5	10	SM 4500P-E	12/15	10:00	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/L	.001	1	EPA 200.9	12/15	11:48	RLS
Cadmium, Total	<.005	mg/l	.005	1	EPA 200.7	12/20	11:42	LNA
Chromium, Total	0.022	mg/l	.005	1	EPA 200.7	12/20	11:42	LNA
Copper, Total	0.058	mg/l	.01	1	EPA 200.7	12/20	11:42	LNA
Lead, Total	0.01	mg/L	.01	1	EPA 200.7	12/20	11:42	LNA
Mercury, Total	0.0001	mg/l	.0001	1	EPA 245.1	12/20	11:41	RLS
Molybdenum, Total	0.05	mg/l	.01	1	EPA 200.7	12/20	11:42	LNA
Nickel, Total	0.013	mg/l	.005	1	EPA 200.7	12/20	11:42	LNA
Silver, Total	<.005	mg/l	.005	1	EPA 200.7	12/15	13:18	LNA
Zinc, Total	0.231	mg/l	.005	1	EPA 200.7	12/20	11:42	LNA

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe

Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYDID M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: 6th 11~11027 (Grab)

JAN 03 YMY

Date of Report:

12/21/11 1170051

Project Number: Lab ID:

124-11-0049582

12/13/11 10:39 Date Collected: Collected By:

CLIENT

Date Received:

12/14/11 15:30

		Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMIS	TRY								
COLO	RMETRIC								
	Phenols (4AAP)	0.102	mg/l	.01	1	EPA 420.4	12/16	10:05	JCL
O&G/TP	H								
GENE	RAL								
	Oil and Grease	23	mg/l	5	1	EPA 1664	12/15	08:00	WXC
	Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	12/16	09:00	WXC

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1









#### CLIIII WALL OF AIMLIOID M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEDED

3197 8 0 MAI.

Date of Report: Project Number:

12/21/11 1170051

Lab ID:

124-11-0049578

Date Collected:

12/13/11 10:35

Collected By:

CLIENT

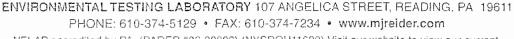
DEPT. OF PUBLIC WORKS

Date Received:

12/14/11 15:30

Sample Desc: 6th & Canal 11-11029 (Grab)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	12/16	12:31	JCL
Cyanide, Total	0.014	mg/L	.004	1	10204001X	12/16	12:31	JCL


Distribution of Reports:

Reviewed and Approved b

Richard Wolfe Technical Director

Page 1 of 1









#### CEMINICAIR OF ANALYSIS M.J. Reider Associates, Inc.



# 4th atr- GC +6th

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

JAN 03 7015

Date of Report: Project Number:

12/21/11 1170051

Lab ID:

124-11-0049579

Date Collected: 12/12/11 11:00

Collected By:

CLIENT

Date Received:

12/14/11 15:30

Sample Desc: GC 11-11028 (Composite) GR, T \$28.00.000.0000

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	3.8	mg/l	.5	10	SM 4500P-E	12/15	10:00	ALD
INORGANIC								
TOTAL								
Arsenic, Total	<.001	mg/l	.001	1	EPA 200.9	12/15	11:48	RLS
Cadmium, Total	<.005	mg/L	.005	1	EPA 200.7	12/20	11:42	LNA
Chromium, Total	<.005	mg/L	.005	1	EPA 200.7	12/20	11:42	LNA
Copper, Total	0.064	mg/l	.01	1	EPA 200.7	12/20	11:42	LNA
Lead, Total	<.01	mg/L	.01	1	EPA 200.7	12/20	11:42	LNA
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	12/20	11:41	RLS
Molybdenum, Total	<.01	mg/l	.01	1	EPA 200.7	12/20	11:42	LNA
Nickel, Total	<.005	mg/L	.005	1	EPA 200.7	12/20	11:42	LNA
Silver, Total	<.005	mg/L	.005	1	EPA 200.7	12/15	13:18	LNA
Zinc, Total	0.121	mg/L	.005	1	EPA 200.7	12/20	11:42	LNA

Distribution of Reports:

Reviewed and Approved by:

Technical Director

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.

Page 1 of 1









### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: GC 11-11029 (Grab) CRIT

JAN 03 7017 

Date of Report: 12/21/11 Project Number: 1170051

Lab ID:

124-11-0049580

Date Collected: 12/13/11 11:03 CLIENT

Collected By: Date Received:

12/14/11 15:30

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Cyanide, Free	<.004	mg/l	.004	1	DEP 1	12/16	12:31	JCL
Cyanide, Total	0.006	mg/l	.004	1	10204001X	12/16	12:31	JCL
Phenols (4AAP)	0.100	mg/l	.01	1	EPA 420.4	12/16	10:05	JCL
O&G/TPH								
GENERAL								
Oil and Grease	16	mg/l	5	1	EPA 1664	12/15	08:00	WXC
Silica Gel Treated N-Hexane Extract(TPH)	<5	mg/l	5	1	EPA 1664	12/16	09:00	WXC

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







#### LEHITILAIE UF ANALY515 M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: Project Number: 11/16/11 1166692

Lab ID:

0124-11-0043914

Account Rep: Date Received:

Richard Wolfe 11/02/11

Date Collected: 11/01/11

Collected By:

08:50 Client

Time Collected:

4th 9TR AECEIVED DEPT. OF PUBLIC WORKS

Sample Description: Belt Press Sludge (Quarterly, Composite)

*	Resul	.ts	expressed	as	Dry	Weight	
---	-------	-----	-----------	----	-----	--------	--

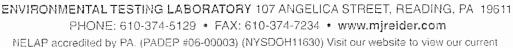
		Detection		n	Test Test				
	Results	Unit	Limit	Procedure	Date	Time	Analyst		
CHEMISTRY									
COLORMETRIC									
Cyanide, Free	<1.99	* mg/kg	1.99	DEP 1	11/03	16:23	jcl		
Cyanide, Total	10	* mg/kg	2.0	10204001X	11/03	16:23	jcl		
Phenols (4AAP)	34	* mg/kg	5.0	EPA 420.4	11/09	12:06	jcl		
Phosphorus as P, Total	21100	* mg/kg	622	SM 4500P-E	11/09	13:10	ald		
PHYSICAL									
Visual Color	See Comment	descript.	0	VISUAL	11/15	08:10	ald		
SIDUES									
rotal Solids	20.1	%	1	SM 2540G	11/03	18:15	jxs		
INORGANIC									
TOTAL									
Chromium, Total	106	∗ mg/kg	2.49	SW846 6010	11/04	13:07	lna		
Silver, Total	9.4	* mg/kg	2.5	SW846 6010	11/07	09:32	lna		
O&G/TPH									
GENERAL									
N-Hexane Extractable Material (O&G)	25120	* mg/kg	1244	EPA 1664	11/07	06:15	WXC		
Silica Gel Treated N-Hexane Extract(TPH)	5995	* mg/kg	1244	EPA 1664	11/08	12:45	WXC		
ORGANIC									
BASE NEUTRALS									
Bis(2-Ethylhexyl) phthalate	<24.9	* mg/kg	24.9	SW846 8270	11/14	13:00	meb		
EXTRACTION									
SW846 8270 Extraction	Complete		0	SW846 8270	11/14	13:00	meb		
COMMENTS:									

1 - Color/visual: Dark gray to black.

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By:


Richard Wolfe

Technical Director

Page 1 of 2

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





NELAC accreditations for various drinking water, wastewater and solid & chemical materials analytes.



# 2011 WEEKLY MERCURY TESTING AT PLANT INFLUENT POINTS AND PLANT EFFLUENT

# MONTHLY FECAL COLIFORM TESTING FOR BIOSOLIDS MONTHLY 503 ANALYSIS FOR PLANT BIOSOLIDS BIOSOLIDS FORM 43 PERFORMED 3/4/11 AND 8/2/11

# Mercury Testing for 2011 at Plant Influent Points and Plant Effluent

		13750 M	Grit	0.35		mi-sele		Switz		
	Date		Chamber		6th Street	12	Influent		Effluent	
- 1	Dale		mg/L		mg/L		mg/L	100	mg/L	
⊢	01/04/11	< <	0.00007	- 新秦生	0.0001	45 TO 12	0.0002	<	0.00007	
⊢	01/05/11	<	0.00007		0.0003	$\vdash$	0.0005	<del>  `</del>	0.00007	
⊢	01/11/11	-	0.00007	$\vdash$	0.00008	╁	0.0003	<del>  `</del>	0.00007	
⊢	1/18/2011	$\vdash$	0.00007	$\vdash$	0.0000	<del>                                     </del>	0.0003	<del>  `</del>	0.00007	
├-	1/25/2011		0.00007	-	0.00009		0.0002	<del>  `</del>	0.00007	
⊢	2/1/2011		0.0004	$\vdash$	0.0003	-	0.0002	<del>                                     </del>	0.00007	
╌	2/8/2011	1	0.00004	<	0.00007		0.0001	<del>  \</del>	0.00007	
⊢	2/9/2011	<del> </del>	0.00009		0.0003		0.0002	<del> </del>	0.00007	
	2/16/2011		0.0001		0.00007	<del> </del>	0.0002	<del> </del>	0.00007	
- F	2/22/2011		0.00007		0.0002	<	0.00007	<del>  </del>	~ 0.00007	
$\vdash$	3/2/2011		0.0002		0.0008		<b>★</b> 0.0004		<b>★</b> 0.00007	
$\vdash$	3/8/2011	<	0.00007		0.0003	-	0.0001	<del> </del>	0.00007	
$\vdash$	3/9/2011	$\vdash$	0.00007		0.00007		0.0002	<del> </del>	0.00007	
-	3/15/2011	<	0.00007	<	0.00007		0.0001	<	0.00007	
	3/22/2011		0.0053		0.00007		0.0001	<b> </b>	0.00007	
F	3/29/2011	<	0.00007		0.00007		0.0011	<	0.00007	
一	4/5/2011		0.0003	<	0.0001		0.0009	<	0.0001	
十	4/6/2011	<	0.0001	<	0.0001		0.0005	<b>-</b>	0.0001	
F	4/12/2011	<	0.0001	<	0.0001		0.0002	<b>/</b>	0.0001	
一	4/19/2011		0.0001	<	0.0001		0.0002	<b>\</b>	0.0001	
	4/26/2011	<	0.0001	<	0.0001		0.0001	<	0.0001	
	5/3/2011	<	0.0001	<	0.0001		0.0003	<	0.0001	
	5/9/2011						<b>≯</b> 0.0001	<	<b>≯</b> 0.0001	
	5/10/2011	<	0.0001	<	0.0001		0.001	<	0.0001	
	5/17/2011		0.0002	<	0.0001	<	0.0001	<	0.0001	
	5/24/2011	<	0.0001		0.001		0.0013	<	0.0001	
	5/31/2011	<	0.0001	<	0.0001		0.0002	<	0.0001	
	6/7/2011	<	0.0001	<	0.0001		0.0001	<	0.0001	
	6/9/2011		0.0001		0.0002		0.0002	<	0.0001	
$_ \Box$	6/14/2011		0.0003	<	0.0001		0.0002	٧	0.0001	
	6/21/2011	<	0.0001		0.0006	<	0.0001	<	0.0001	
	6/28/2011		0.0002		0.0001		0.0002	٧	0.0001	
	7/5/2011		0.0006	<	0.0001		0.0002	<	0.0001	
L	7/7/2011 🔏	<	0.0001	<	0.0001		₩ 0.0005	$\overline{}$	<b>№</b> 0.0001	
$\bot$	7/12/2011	<	0.0001	<	0.0001	<	0.0001	<	0.0001	
∍L	7/19/2011	<	0.0001		0.0001		0.0003	<	0.0001	
L	7/26/2011	<	0.0001	<	0.0001	<	0.0001	<	0.0001	
L	8/2/2011	<	0.0001	<	0.0001	<	0.0001	<	0.0001	
	8/3/2011	<	0.0001	$\sqcup$	0.0001		0.0001	<	0.0001	
$\vdash$	8/9/2011	<	0.0001	$\vdash \vdash$	0.0006	<u> </u>	0.0001	<u> </u>	0.0001	
L	8/16/2011	<	0.0001	<	0.0001		0.0003	<	0.0001	
L	8/18/2011		0.0001		0.0000		<b>№</b> 0.0005	<b>  &lt;  </b>	0.0001	
	8/23/2011	<	0.0001		0.0003	<	0.0001	<	<b>泮</b> 0.0001	
- ⊢	8/30/2011	<	0.0001	_	0.0005	<	0.0001	<	0.0001	

	Date		Grit Chamber mg/L		6th Street mg/L		Influent mg/L		Effluent mg/L	
	9/6/2011	<b>'</b>	0.0001	<	0.0001		0.0001	<	0.0001	
	9/7/2011	<	0.0001	<	0.0001	<	0.0001	<	0.0001	
L	9/13/2011		0.0001		0.0001		0.0002	<u>  &lt; </u>	0.0001	
	9/20/2011	<	0.0001		0.0001		0.0001	<	0.0001	
	9/27/2011		0.0005		0.0001	ALLEG LEVEL PORTS	0.0002	<	0.0001	
	9/28/2011		and the second second second second				No. 1 was also so that the state of the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same and the same	<	0.0001	
	9/29/2011			فتند بنا				<	0.0001	
	9/30/2011			. A			<u>.</u>	<	0.0001	
T	10/4/2011	٧	0.0001		0.0002		0.0005	<	0.0001	
	10/5/2011	٧	0.0001		0.0002		0.0001	<	0.0001	
Γ	10/11/2011		0.0001	<	0.0001		0.0001	<	0.0001	
Γ	10/18/2011	<	0.0001		0.0002		0.0001	<	0.0001	
T	10/25/2011		0.0001		0.0005		0.0002	<	0.0001	
Γ	11/1/2011	<	0.0001	<	0.0001	<	0.0001	<	0.0001	
	11/8/2011		0.0001	<	0.0001		0.0002	<	0.0001	•
Γ	11/15/2011	<	0.0001		0.0001		0.0003	<	0.0001	
Ŧ	11/16/2011	<	0.0001		0.0002		0.0004	<	0.0001	
Γ	11/22/2011 🖈		0.0002		0.0002		<b>♣</b> 0.0001	<	<b>*</b> 0.0001	
Γ	11/29/2011		0.0002		0.0002		0.0002	<	0.0001	
Γ	12/6/2011	<	0.0001	<	0.0001		0.0003	<	0.0001	
T	12/7/2011		0.0002	<	0.0001		0.0001	<	0.0001	
丁	12/12/2011	<	0.0001		0.0001				Management of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of	
Γ	12/13/2011						0.0002	<	0.0001	
Γ	12/20/2011		0.0001		0.0001		0.0002	<	0.0001	
	12/27/2011	<	0.0001	<	0.0001		0.0002	<	0.0001	
Г										

Fecal Coliform for Biosolids									
Sample Date	Sample ID	Analyst	Result Colonies/gram						
1/12/2011	#1	JAH	117,101						
1/12/2011	#2	JAL	188,317						
1/13/2011	#3	JAH	91,087						
1/14/2011	#4	DMN	58,063						
1/14/2011	#5	DMN	58,724						
1/19/2011	#6	JAL	104,456						
1/19/2011	#7	JAL	85,349						
2/8/2011	#1	JAL	54,784						
2/8/2011	#2	DMN	26,288						
2/9/2011	#3	JAH	55,627						
2/9/2011	#4	JAH	70,162						
2/10/2011	#5	JAH	46,809						
2/10/2011	#6	JAH	50,743						
2/11/2011	#7	JAH	54,132						
3/11/2011	#1	JAL	103,615						
3/11/2011	#2	JAL	85,158						
3/15/2011	#3	ADM	49,998						
3/15/2011	#4	ADM	31,947						
3/15/2011	#5	ADM	31,399						
3/16/2011	#6	JAL	61,514						
3/16/2011	#7	JAL	237,177						
4/4/2011	#1	JAH	61,019						
4/4/2011	#2	JAH	64,815						
4/5/2011	#3	JAH	85,401						
4/5/2011	#4	JAH	66,452						
4/6/2011	#5	JAH	1,531						
4/6/2011	#6	JAH	7,502						
4/7/2011	#7	ADM	37,170						
5/10/2011	#1	JAH	45,419						
5/10/2011	#2	JAH	47,370						

Fecal Coliform for Biosolids							
Sample Date	Sample ID	Analyst	Result Colonies/gram				
5/11/2011	#3	JAH	55,602				
5/11/2011	#4	JAH	52,994				
5/11/2011	#5	JAH	42,257				
5/12/2011	#6	JAH	65,736				
5/12/2011	#7	JAH	53,246				
6/7/2011	#1	JAH	20,348				
6/7/2011	#2	JAH	8,664				
6/8/2011	#3	JAH	36,998				
6/8/2011	#4	JAH	21,454				
6/10/2011	#5	DMN	14,573				
6/13/2011	#6	JAH	50,153				
6/13/2011	#7	JAH	48,735				
7/5/2011	#1	JAH	40,203				
7/6/2011	#2	JAH	299,197				
7/6/2011	#3	JAH	145,422				
7/7/2011	#4	PAL	65,747				
7/7/2011	#5	PAL	40,858				
7/8/2011	#6	DMN	31,359				
7/8/2011	#7	DMN	28,238				
8/4/2011	#1	ADM	14,591				
8/4/2011	#2	ADM	12,363				
8/5/2011	#3	ADM	59,087				
8/5/2011	#4	ADM	53,970				
8/8/2011	#5	ADM	22,069				
8/9/2011	#6	ADM	3,064				
8/9/2011	#7	ADM	3,361				
9/12/2011	#1	ADM	52,369				
9/13/2012	#2	PAL	54,167				
9/13/2012	#3	DMN	48,104				
9/13/2012	#4	DMN	51,558				

Fecal Coliform for Biosolids							
Sample Date	Sample ID	Analyst	Result Colonies/gram				
9/23/2011	#5	JAH	34,490				
9/23/2011	#6	JAH	88,830				
9/26/2011	#7	ADM	60,680				
10/12/2011	#1	ADM	303,200				
10/12/2011	#2	ADM	321,401				
10/13/2011	#3	ADM	308,661				
10/13/2011	#4	ADM	278,014				
10/13/2011	#5	ADM	487,511				
10/18/2011	#6	ADM	106,897				
10/18/2011	#7	ADM	86,478				
11/15/2011	#1	JAH	117,465				
11/15/2011	#2	JAH	81,071				
11/15/2011	#3	JAH	113,429				
11/16/2011	#4	JAH	142,857				
11/16/2011	#5	JAH	176,522				
11/17/2011	#6	JAH	107,143				
11/17/2011	#7	PAL	77,408				
12/13/2011	#1	PAL	124,505				
12/13/2011	#2	PAL	93,610				
12/13/2011	#3	PAL	27,628				
12/14/2011	#4	PAL	73,951				
12/14/2011	#5	PAL	209,713				
12/15/2011	#6	PAL	71,158				
12/15/2011	#7	ADM	42,000				

Report completed by:

Amy L. Morriss

Laboratory Supervisor
City of Reading WWTP



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA/DEP Lab ID # 14-00588

# Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601

Lab Sample ID:

1/5/11

Date Received:

January 10, 2011

Date Sampled: Report Date:

1/26/11 Composite

Sample type: County:

Berks

Customer Sample ID:

Belt Press Biosolids 11-148

RES	T T T	тς
T I I	-	11.

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	N P	K	Mg	Ca	Na	Fe	Al
<ul><li>② 21.3</li><li>7.8</li></ul>	% 18.33	64.68	5.13	4.30	0.83	` •	weight bas 0.12	o.41	6.58	0.10	1.09	0.76
Mn	As	Cd ,	Cr	Cu	Pb	<b>Hg</b> g (dry weigh	Mo	Ni	Se	Zn	PCB ¹	Reactive CN

NR-Not Requested

One dry ton of this material is equivalent to

1308 gallons of wet material or 5.5 tons of wet material

#### PRIMARY NUTRIENT CONTENT

%	(dry wt basis)
-a1 M	5 13

0.97

dry tons of this biosolid will supply 100 lbs of total N.

P2O5 4.48

dry tons of this biosolid will supply 100 lbs of P 2.55

K₂O 0.15

ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	1/14/2011	9:40:20
As	3050B + 6010	Brooks	1/14/2011	9:40:20
Se	3050B + 6010	Brooks	1/14/2011	9:40:20
Нg	7473	Brooks	1/18/2011	9:05:26 AM
PCB	8082			

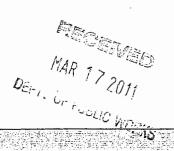
Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

RAW LABORATORY	BENCH DATA FOR	R EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	1.871	1.871	1.871	0.419	1.871	1.871	1.871	1.871	1.871	
Analyte conc. in sample/ digest (mg/L except Hg)	0.021	0.023	3.68	0.128 ug	0.32	0.29	0.80	0.05	10.96	
Method limit	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	Sample Receipt			
te-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg	Accentable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3.13 -	Acceptable	- 1 = 2 = 41 = - 2 = - 2 = 2 = 2 = 1 = 1		75	
Cd 3.34		392.22		85	i de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de l
Cu 535.9		1500		4300	
Pb 116.7	0	300		840	
Hg 1.67	0	17		57	
Mo 46.5	0-	75	and the second	Cart Carrier	
Ni 42:3	0	420			
Se 7.59					PACE SAME DESTRUCTION OF THE SAME SAME SAME SAME SAME SAME SAME SAM
Zn 1597.1	0	2800		7500	
PCB¹ ≤1.47	0	4		8.6	


¹DEP limit only





## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601



Lab Sample ID: Date Received: E14538 ---() February 4, 2011

, il 20

81.1

Date Sampled: Report Date: 2/2/11 3/11/11

Sample type: County:

Composite & Berks

Customer Sample ID:

Belt Press Sludge

pH	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	K	Mg	Ca	Na	Fe	Al
चे 21.6	<del></del> % <del></del>					— % (dr	y weight ba	sis) ——				
8.1	23.12	62.86	4.89	4.19	0.70	2.04	0.10	0.38	8.76	0.12	0.96	0.63
Mn	As	Cd	Cr	Cu	Pb	Hg g (dry weigl	Mo	Ni	Se	Zn	PCB ¹	Reactive CN

NR-Not Requested

One dry ton of this material is equivalent to

1037 gallons of wet material or 4.3 tons of wet material

중시 기술이 되는 기술을 가장 기를 보고 있다. 그는

## PRIMARY NUTRIENT CONTENT

% (dry wt basis) Total N 4.89

1.02 dry tons of this biosolid will supply 100 lbs of total N.

P₂O₅ 4.67

2.45 dry tons of this biosolid will supply 100 lbs of P

K₂O 0.12

ANALYSIS	INFORMATI	ON FOR EPA	. <b>5</b> 03 POLI	LUTANTS
----------	-----------	------------	--------------------	---------

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B ÷ 6010	Brooks	2/11/2011	9:40:40
As	3050B ÷ 6010	Brooks	2/11/2011	9:40:40
Se	3050B ÷ 6010	Brooks	2/11/2011	9:40:40
Hg	7473	Brooks	2/7/2011	2:21:27 PM
PCB	8082			
Subcontracted to Fairway La	aboratories, Inc. (ID 7-00062)			

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Мо	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.518	2.518	2.518	0.302	2.518	2.518	2.518	2.518	2.518	
Analyte conc. in sample/ digest (mg/L except Hg)	0.025	0.033	5.26	0.141 ug	0.57	0.52	1.12	0.09	16.22	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	lyses: Results (except	soluble salts) o	n dry weight basis	Sample Receipt
Vitrate-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

CO

mg∕kg	"Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 2.18 2 10		41		-75	
Cd 2:87		39		- 85	
Cu 451.6		1500 ==		4300	
Pb 96.0 - 0_1-1-1		300		840	
Hg 72:02		17		57	
Mo 49.0 - 0-=		75			
Ni. 44.3.		420			
Se7-92					
Zn : 1393 3 - 15 - 2		-2800		7500	
PCB ¹ < 13		4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		8.6	

DEP limit only



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601

Lab Sample ID:

E14590

Date Received:

March 11, 2011

Date Sampled: Report Date:

3/4/2011

Sample type:

3/25/11 Composite

County: Customer Sample ID: Berks Biosolids

RESULTS

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	N P	K	Mg	Ca	Na	Fe	Al
<u>@</u> 21.8	%					— % (dr	y weight ba	sis)				
7.9	17.67	67.69	2.44	1.56	0.88	1.98	0.13	0.46	5.18	0.13	1.05	0.81
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
-					mg/k	g (dry weig	ht basis)					
5141.6	4.66	3.53	114.6	551.6	113.8	2.22	58.5	57.6	9.38	1568.4	< .31	< 1

NR-Not Requested

One dry ton of this material is equivalent to

1357 gallons of wet material or 5.7 tons of wet material

PRIMARY NUTRIENT CONTENT

% (dry wt basis) al N 2.44

2.05

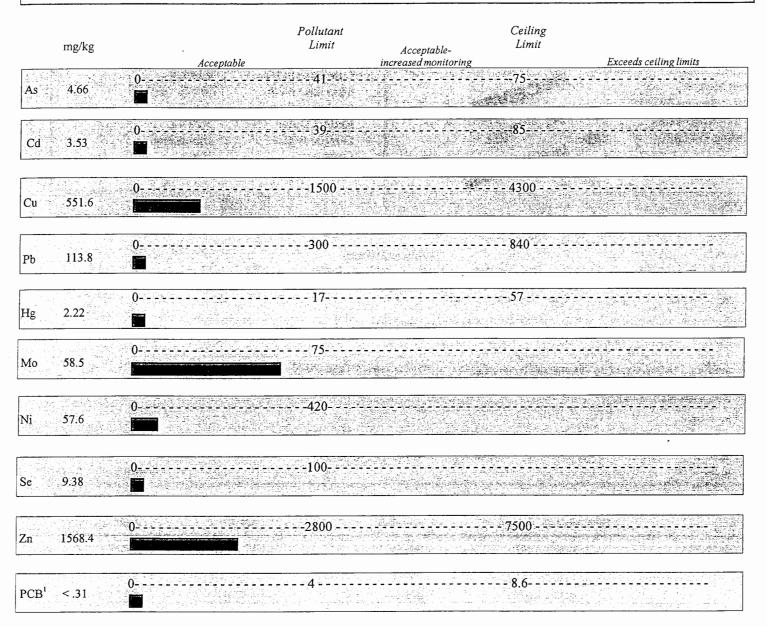
dry tons of this biosolid will supply 100 lbs of total N.

P,O, 4.53

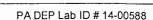
2.53

dry tons of this biosolid will supply 100 lbs of P

K₂O 0.15


**ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS** 

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	3/17/2011	8:51:58
As	3050B + 6010	Brooks	3/17/2011	8:51:58
Se	3050B + 6010	Brooks	3/17/2011	8:51:58
Hg	7473	Rishel	3/18/2011	7:48:45 AM
PCB	8082			
Subcontracted to Fairway	Laboratories, Inc. (ID 7-00062)			


RAW LABORATORY	BENCH	DATA FOR	<b>EPA 503</b>	POLLUTANT	'S
	Λ.σ.	Cd	Cu	U«	

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
Wet Wt. aliquot (g)	2.007	2.007	2.007	0.345	2.007	2.007	2.007	2.007	2.007
Analyte conc. in sample/ digest (mg/L except Hg)	0.033	0.025	3.91	0.136 ug	0.41	0.41	0.81	0.07	11.12
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008

	Optional Ana	Sample Receipt			
N 'e-N (n.⊿Kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature



DEP limit only







Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601

Lab Sample ID:

Phone: 814-863-0841

Web: www.aasl.psu.edu

Fax: 814-863-4540

E14644

Date Received:

April 13, 2011

Date Sampled: Report Date:

4/6/11 5/5/11

Sample type:

Composite

County:

Berks

Customer Sample ID:

Belt Press Sludge

R	ESI	Л	,	rs	

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	K	Mg	Ca	Na	Fe	Al
<u>@</u> 21.9	%	<del></del>				— % (dr	y weight bas	sis)				
7.9	17.95	66.55	5.65	4.71	0.94	1.92	0.13	0.39	6.12	0.11	1.24	0.79
Mn	As	Cd	Cr	Cu		Hg		Ni	Se	Zn	PCB ¹	Reactive CN_
2155.2	3.1	4.11	144.4	413.9	-	g (dry weig 2.91	tht basis) 67.5	75.2	7.46	1567.8	< .3	< 1

NR-Not Requested

One dry ton of this material is equivalent to

1336 gallons of wet material or 5.6 tons of wet material

되는 얼마 얼마를 가는 그는 그들은 것은 것이다.

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis) ral N 5.65

0.88 dry tons of this biosolid will supply 100 lbs of total N.

P,O, 4.41

dry tons of this biosolid will supply 100 lbs of P 2.60

K,O 0.16

		2.5			1 5 1 1	100	1.5 (5)	
ANALVSI	C IN	FORM	ATIO	N FOR	EPA	503 P	OLLUTANT	`S

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	. 3050B + 6010	Brooks	4/22/2011	14:23:46
As	3050B + 6010	Brooks	4/22/2011	14:23:46
Se	3050B + 6010	Brooks	4/22/2011	14:23:46
Hg	7473	Rishel	4/20/2011	9:09:21 AM
PCB	8082			

¹Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	3.769	3.769	3.769	0.273	3.769	3.769	3.769	3.769	3.769	
Analyte conc, in sample/ digest (mg/L except Hg)	0.042	0.056	5.60	0.143 ug	0.91	1.02	1.65	0.10	21.21	
Method limit (mg/L, except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	Sample Receipt				
N e-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equiva <u>l</u> ent (%)	Soluble Salts (mmhos/cm)	Other:		Ambient Temperature

mg/kg	Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3.1		41		. 75 E	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Cd -4.11		39:50 1446: 2544: 254		85	
Cu 413.9		1500		4300	
Pb 122.0		300		840	
Hg 2.91		17		57	
Mo 67.5		75			
Ni 75.2		420			
9 Se 7.46					
Zn 1567.8		2800		- 7500	
PCB ¹ < 3		4		8.6	

DEP limit only



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601 JUN 02 2011 DEPT. OF PUBLIC WORK

Lab Sample ID:E14673Date Received:May 9, 2011Date Sampled:5/4/11Report Date:5/31/11Sample type:CompositeCounty:Berks

Customer Sample ID: Beltpress Sludge

F	ES	UJ	T	S

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	V P	K	Mg	Ca	Na	Fe	Al
② 22.4 8.1	% 17.88	66.50	5.60	4.67	0.94	% (dr. 2.01	y weight ba 0.13	sis) —— 0.44	5.31	0.10	1.26	0.81
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
					mg/k	g (dry weig	ht basis)					
1490.4	3.75	4.04	131.6	556.6	159.6	2.16	71.6	75.2	6.37	1651.6	< .3	< 1

NR-Not Requested One dry ton of this material is equivalent to 1341 gallons of wet material or 5.6 tons of wet material

#### PRIMARY NUTRIENT CONTENT

. %	(dry wt basis)		
ıl N	5.60	0.89	dry tons of this biosolid will supply 100 lbs of total N.
$P_2O_5$	4.61	2.48	dry tons of this biosolid will supply 100 lbs of P
$K_2O$	0.16		

		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	
ANALVSIS	INFORMAT	ION FOR EPA	503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	5/27/2011	10:52:28
As	3050B + 6010	Brooks	5/27/2011	10:52:28
Se	3050B + 6010	Brooks	5/27/2011	10:52:28
Hg	7473	Brooks	5/11/2011	1:36:08 PM
PCB	8082			

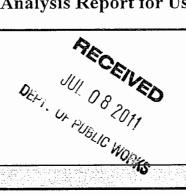
Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

RAW LABORATORY	BENCH DATA	FOR EPA 5	503 POLLUTANTS	
				_

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.537	2.537	2.537	0.379	2.537	2.537	2.537	2.537	2.537	
Analyte conc. in sample/ digest (mg/L except Hg)	0.034	0.037	5.05	0.147 ug	0.65	0.68	1.45	0.06	14.99	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	Sample Receipt			
N e-N (u_kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg	Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3.75 0		41		75	
Cd 4.04		39		85	
O Cu 556.6		1500		4300	
Pb 159.6		300		840	
Hg 2.16		17		57	
Mo 71.6		75			
Ni 75.2		420			
0 Se 6.37		100			
Zn 1651.6		2800		7500	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
PCB ¹ < .3 0		4		8.6	


¹DEP limit only



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601



Lab Sample ID:

E14741

Date Received:

June 16, 2011

Date Sampled: Report Date:

6/8/11 7/1/11

Sample type:

Composite

County:

Berks

Belt press sludge 11-5059 Customer Sample ID:

SULTS	

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	N P	K	Mg	Ca	Na	Fe	Al
@ 23 C	<b>-</b> %		·			% (dr	y weight ba	sis)				<del></del>
8.0	19.32	66.65	5.38	4.39	0.99	2.03	0.10	0.37	5.30	0.09	1.13	0.63
Mn	As	Cd	Cr	Cu		Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
					mg/k	g (dry weig	ht basis)					
1544.2	3.77	4.04	117.1	531.8	124.0	3.08	70.7	65.1	6.23	1627.7	< .28	< 1

NR-Not Requested

One dry ton of this material is equivalent to

2.47

1241 gallons of wet material or 5.2 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

5.38 al N

0.93

dry tons of this biosolid will supply 100 lbs of total N.

dry tons of this biosolid will supply 100 lbs of P

P,O, 4.64 K,O

0.12

ANALYSIS INFORMATION FOR FPA 503 POLILITANTS

 ANAL 1515 INFORMATION FOR ELA 505 I OLLO TANTS											
Analyte	EPA SW-846 Method	Analyst	Date	Time							
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	6/24/2011	12:11:10							
As	3050B + 6010	Brooks	6/24/2011	12:11:10							
Se	3050B + 6010	Brooks	6/24/2011	12:11:10							
Hg	7473	Rishel	6/22/2011	7:51:48 AM							
PCB	8082										

Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

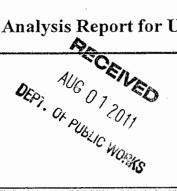
RAW LABORATORY BENCH DATA	A FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn
Wet Wt. aliquot (g)	2.634	2.634	2.634	0.262	2.634	2.634	2.634	2.634	2.634
Analyte conc. in sample/ digest (mg/L except Hg)	0.038	0.041	5.41	0.156 ug	0.72	0.66	1.26	0.06	16.57
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008

	Optional Ana	Sample Receipt			
te-N	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

m	g/kg	Acceptable	ollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3	.77				-75	
Cd 4	.04		- 39 ' 		85-	
Cu 5	31.8		-1500		4300	
Pb 1	24.0		-300		840	
	0		- 17-		57	
Mo 70	0	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	-75		e in the desired for the	
Ni 65	5.1		-420- =			
Se -6.	23		-100			
Zn 16	27.7		2800		7500	Barrier Andrew Andrews Commencer
PCB ¹ <	.28		. 4		8.6	

DEP limit only






Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601



Lab Sample ID: Date Received: E14776

Date Sampled:

July 8, 2011 7/5/11

Report Date:

7/25/11 Composite

Sample type: County:

Berks

Customer Sample ID:

Belt Press Sludge

RESULTS

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	K	Mg	Ca	Na	Fe	Al,
322.6 8.0	— % <del>—</del> 20.91	64.96	5.21	4.29	0.92	— % (dr 2.09	y weight bas 0.09	o.43	6.50	0.10	1.23	0.72
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive
						g (dry weigl	<b>.</b>					CN_

NR-Not Requested

One dry ton of this material is equivalent to

1147 gallons of wet material or 4.8 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

N 5.21 0.96

dry tons of this biosolid will supply 100 lbs of total N.

 $P_2O_5$  4.78 2.39

dry tons of this biosolid will supply 100 lbs of P

K₂O 0.11

A STATISTICS	TOTOTAL	ADDIONE	EDA FORDO	* * TITE * * * ********
		A 1 11 1 N H 1 1 N	PPA SH3 PC	
ANALISIS	TI II. OTCIT	ATION FOR		

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd, Cu, Mo, Pb, Ni, Zn	3050B + 6010	Stecko	7/15/2011	7:39:03
As	3050B + 6010	Stecko	7/15/2011	7:39:03
Se	3050B + 6010	Stecko	7/15/2011	7:39:03
Hg	7473	Rishel	7/11/2011	10:06:41 AM
PCB	8082			
¹ Subcontracted to Fairway I	Laboratories, Inc. (ID 7-00062)			

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.274	2.274	2.274	0.360	2.274	2.274	2.274	2.274	2.274	
Analyte conc. in sample/ digest (mg/L except Hg)	0.042	0.040	5.54	0.270 ug	0.79	0.82	1.31	0.07	16.73	
Method limit	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Analyses: Results (except soluble salts) on dry weight basis Sample Receipt									
JiN (n.eg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature					

mg/kg	Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 4.43		41		75	ezithe TATTATEREN
Cd = 4.17	0	:39  		85-35-,	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
Cu 582.9	0			4300	
Pb 137.5	0-	300			Series 2 - Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of
Hg 3.59 🗐	0-2-21	E 17		57	
Mo 83.1	0	75			
Ni 86.6	0	420			
Se - 7.79	0	-=100	Samuel States		
Zn 1759.4	0	2800		-7500	
PCB ¹ < .13 sec	0	4		8.6	

¹DEP limit only





Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St · Reading PA 19601

Lab Sample ID:

E14823

Date Received:

August 8, 2011

Date Sampled: Report Date:

8/2/11 8/26/11

Sample type:

Berks

County: Customer Sample ID:

Belt Press Sludge 11-6825

R	E	ST	П	Т	5

pH	Solids	Volatile	Tot-N	Org-N	$NH_4N$	P	K	Mg	Ca	Na	Fe	Al
@ 23.8	%					% (dry	weight bas	sis) —		n		
7.9	19.79	65.63	5.50	4.49	1.01	2.15	0.10	0.46	5.68	0.11	1.43	0.74
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive <u>CN</u>
Mn	As	Cd	Cr	Cu		<b>Hg</b> g (dry weigh		Ni	Se	Zn	PCB ¹	

NR-Not Requested

One dry ton of this material is equivalent to

1212 gallons of wet material or 5.1 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

stal N 5.50 0.91 dry tons of this biosolid will supply 100 lbs of total N.

P2O5 4.92

2.33

dry tons of this biosolid will supply 100 lbs of P

K,O 0.12

#### ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	8/12/2011	9:12:43
As	3050B + 6010	Brooks	8/12/2011	9:12:43
Se	3050B + 6010	Brooks	8/12/2011	9:12:43
Hg	7473	Brooks	8/25/2011	1:57:50 PM
PCB	8082			

Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.085	2.085	2.085	0.387	2.085	2.085	2.085	2.085	2.085	
Analyte conc. in sample/ digest (mg/L except Hg)	0.033	0.037	5.52	0.164 ug	0.71	0.82	1.81	0.07	18.96	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	Sample Receipt			
ate-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg	Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3.95 0		All Sandard States		75	Exceeds certify times
Cd 4.48		39		85-	7.7 (2.2)
Cu 668.6		1500	Angelo A Vision	4300	
Pb 219.5	VII. RADIO SA CONTRA DE SANTA			840	
Hg 2.14		17		57	
Mo 86.0		75-1-2			
Ni 98.8		420			
Se 8.41					
Zn 2297.8		2800	1011 A.M. M. 1011	_ 7500	7
PCB ¹ < .27		4		8.6	

DEP limit only





Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

### Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601

Lab Sample ID:

Date Received:

E14861

September 12, 2011 9/6/11

Date Sampled: Report Date:

9/28/11 Composite

Sample type: County: Berks

Customer Sample ID: 11-7959 Belt Press Sludge

RESU	JL	л	S

pН	Solids	Volatile	Tot-N	Org-N	$NH_4N$	P	K	$\mathbf{M}\mathbf{g}$	Ca	Na	Fe	AI
@ 22.5	%-					— % (dry	weight bas	sis)				
8.5	21.32	63.05	5.01	4.19	0.81	1.82	0.10	0.44	6.24	0.10	1.66	0.88
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
Mn	As	Cd	Cr	Cu		<b>Hg</b> g (dry weigh		Ni	Se	Zn	PCB ¹	

NR-Not Requested

One dry ton of this material is equivalent to

1125 gallons of wet material or 4.7 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

0.12

otal N 5.01

1.00

dry tons of this biosolid will supply 100 lbs of total N.

P,O, 4.17 K,O

2.75

dry tons of this biosolid will supply 100 lbs of P

ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time	
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	9/16/2011	12:34:19	
As	3050B + 6010	Brooks	9/16/2011	12:34:19	
Se	3050B + 6010	Brooks	9/16/2011	12:34:19	
Hg	7473	Brooks	9/16/2011	6:38:44 AM	
PCB	8082				

Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

RAW LABORATORY BENCH	DATA FOR EPA 503	POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.113	2.113	2.113	0.222	2.113	2.113	2.113	2.113	2.113	
Analyte conc. in sample/ digest (mg/L except Hg)	0.040	0.037	6.59	0.146 ug	0.85	0.67	1.56	0.05	18.53	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	Sample Receipt			
rate-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg	Acceptable	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
1.20	Acceptable	41	increasea monitoring	75	Exceeds certing timis
		- = 39	contract of	85 <u></u>	
Cu 731.8 _ [		1500 <b></b> -		4300	
Pb 173.0				840	
Hg 3.09		17		57	
Mo 94.3		75			
3.0					
Se = 5.76	요. 아마나 생님이는 하는 그는 이 그는 그가 그리고 무슨데? 그렇지만 되었다. 한 보고 싶어?	100 			
Zn 2057.3				7500	
PCB ¹ < .13		7		8.6	

DEP limit only



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab 1D # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601

Lab Sample ID:

E14906

Date Received:

October 7, 2011 10-4-11

Date Sampled: Report Date:

10/27/11

Sample type: County:

Composite Berks

11-8792 Belt press sludge Customer Sample ID:

RESU	JLTS

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	K	Mg	Ca	Na	Fe	Al
@ 22 C	— _% —					— % (dr)	weight bas	sis)				
8.0	20.24	61.85	5.11	4.14	0.97	1.58	0.11	0.37	4.19	0.07	1.51	0.88
												<b>7</b> 0 (1
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN_
Mn	As	Cd	Cr	Cu		<b>Hg</b> g (dry weigl		Ni	Se	Zn	PCB ¹	

NR-Not Requested

One dry ton of this material is equivalent to

1185 gallons of wet material or 4.9 tons of wet material

#### PRIMARY NUTRIENT CONTENT

%	(dry	wt	basis)	
---	------	----	--------	--

Jtal N 5.11 0.98

dry tons of this biosolid will supply 100 lbs of total N.

 $P_2O_5$ 3.62

K,O

3.16

dry tons of this biosolid will supply 100 lbs of P

0.13

#### ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	10/14/2011	12:30:51
As	3050B + 6010	Brooks	10/14/2011	12:30:51
Se	3050B + 6010	Brooks	10/14/2011	12:30:51
Hg	7473	Brooks	10/17/2011	12:00:44 PM
PCB	8082			

¹Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Си	Hg	Мо	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	1.820	1.820	1.820	0.346	1.820	1.820	1.820	1.820	1.820	
Analyte conc. in sample/ digest (mg/L except Hg)	0.028	0.027	4.37	0.172 ug	0.41	0.48	1.04	0.03	12.04	
Method limit	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	lyses: Results (except	soluble salts) o	n dry weight basis	Sample Receipt
ate-N (mg/kg)	Total Carbon (%)	CCE Calcium Garbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg	dagantahla	Pollutant Limit	Acceptable- increased monitoring	Ceiling Limit	Exceeds ceiling limits
As 3.82	Acceptable	4174	increased monitoring	75	Exceeds certain timins
Cd 3.65				85	<b>M</b> 20/00/20
0 Cu 592.6	And House of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont	1500		- 4300	
Pb 140.6		300		= 840 =	
Hg 2.46		17		-57 	
Mo 55.1 0	aran da Maria da Aran da Maria da da da da da da d	75			
Ni 65.4					
Se == 4.13 == == == ==	Establish and	100 			
Zn 1634.1				7500	
PCB ¹ -< .13		Z Z		8.6-	

¹DEP limit only



Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

PECEIVED Amy Morriss

City of Reading WWTP 815 Washington St Reading PA 19601

DEFI. OF PUBLIC WORKS

Lab Sample ID:

E14984

Date Received:

November 4, 2011

Date Sampled: Report Date: Sample type:

11/1/11 11/17/11 Composite

County:

Berks

Customer Sample ID:

11-9716 Belt press Sludge

RJ			

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	K	Mg	Ca	Na	Fe	Al
@ 21.8 C	<b>-</b> % -					— % (dr	y weight ba	sis)				
8.0	17.60	64.92	5.43	4.32	1.12	2.05	0.12	0.44	5.76	0.11	1.53	1.02
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
907.1	3.66	4.43	129.0	667.4	-	g (dry weigl 2.89	ht basis) 62.8	66.7	6	1775.7	< .15	< 1

NR-Not Requested

One dry ton of this material is equivalent to

1363 gallons of wet material or 5.7 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

tal N 5.43 0.92 dry tons of this biosolid will supply 100 lbs of total N.

P,O, 4.70

2.44

dry tons of this biosolid will supply 100 lbs of P

K,O 0.14

그는 살이 없는 사람들이 되지 않는데 뭐		
ANALYSIS IN	FORMATION FOR EPA	503 POLLUTANTS 🐬

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	11/11/2011	14:04:59
As	3050B + 6010	Brooks	11/11/2011	14:04:59
Se	3050B + 6010	Brooks	11/11/2011	14:04:59
Hg	7473	Brooks	11/11/2011	2:03:33 PM
PCB	8082			

Subcontracted to Fairway Laboratories, Inc. (ID 7-00062)

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.473	2.473	2.473	0.449	2.473	2.473	2.473	2.473	2.473	
Analyte conc. in sample/ digest (mg/L except Hg)	0.032	0.039	5.81	0.228 ug	0.55	0.58	1.30	0.05	15.46	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.005	0.020	0.015	0.008	

	Optional Ana	lyses: Results (except	soluble salts) of	i dry weight basis	Sample Receipt
ate-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature

mg/kg		Pollutant Limit	Acceptable-	Ceiling Limit	
As 3.66 (+57) 0	Acceptable	412	increased monitoring	-75-17-17-17-17-17-17-17-17-17-17-17-17-17-	Exceeds ceiling limits
Cd 4.43		39		85	
Cu 667.4		1500		= 4300 = = == == == == == == == == == == ==	
Pb 149.1		300			
O		17		-57	
Mo 62.8 0		75 			
Ni _66.7					
Se6		100			
Zn 1775.7		2800		-7500	
PCB ¹ < 15		4		8.6	

¹DEP limit only





Phone: 814-863-0841 Fax: 814-863-4540 Web: www.aasl.psu.edu PA DEP Lab ID # 14-00588

## Analysis Report for Use of Biosolids on Cropland

Amy Morriss City of Reading WWTP 815 Washington St Reading PA 19601 Lab Sample ID:

E15046

Date Received:

December 12, 2011

Date Sampled: Report Date: 12/6/11 1/3/12

Sample type: County: Composite Berks

Customer Sample ID:

11-10847 Belt Press Sludge

				-		-:-	200	
`	~		•		Υ.	TT	7	0
		≺	Ħ.		ı	IL		•

pН	Solids	Volatile	Tot-N	Org-N	NH ₄ N	P	К	Mg	Ca	Na	Fe	Al
@ 21.8 C	%					% (dry	weight ba	sis) —				
7.9	16.13	65.39	5.89	5.14	0.75	2.22	0.12	0.48	7.35	0.09	1.89	1.09
Mn	As	Cd	Cr	Cu	Pb	Hg	Mo	Ni	Se	Zn	PCB ¹	Reactive CN
					mg/kg	g (dry weigh	nt basis)					

NR-Not Requested

One dry ton of this material is equivalent to

1486 gallons of wet material or 6.2 tons of wet material

#### PRIMARY NUTRIENT CONTENT

% (dry wt basis)

Total N 5.89

0.85

dry tons of this biosolid will supply 100 lbs of total N.

P₂O₅ 5.09

2.25

dry tons of this biosolid will supply 100 lbs of P

K₂O 0.14

#### ANALYSIS INFORMATION FOR EPA 503 POLLUTANTS

Analyte	EPA SW-846 Method	Analyst	Date	Time
Cd,Cu,Mo,Pb,Ni,Zn	3050B + 6010	Brooks	12/16/2011	10:46:40
As	3050B + 6010	Brooks	12/16/2011	10:46:40
Se	3050B + 6010	Brooks	12/16/2011	10:46:40
Hg	7473	Brooks	12/16/2011	2:35:35 PM
PCB1	8082			

Subcontracted to Fairway Laboratories. Inc. (ID 7-00062)

#### RAW LABORATORY BENCH DATA FOR EPA 503 POLLUTANTS

	As	Cd	Cu	Hg	Mo	Ni	Pb	Se	Zn	
Wet Wt. aliquot (g)	2.025	2.025	2.025	0.337	2.025	2.025	2.025	2.025	2.025	
Analyte conc. in sample/ digest (mg/L except Hg)	0.026	0.031	4.52	0.166 ug	0.39	0.39	1.57	0.03	11.54	
Method limit (mg/L except Hg)	0.015	0.005	0.015	0.0010 ug	0.015	0.010	0.025	0.025	0.050	

	Optional Ana	lyses: Results (except	soluble salts) o	n dry weight basis	Sample Receipt	
 itrate-N (mg/kg)	Total Carbon (%)	CCE Calcium Carbonate Equivalent (%)	Soluble Salts (mmhos/cm)	Other:	Ambient Temperature	







Now part of the ALS Group

34 Dogwood Lane • Middletown, PA 17057 • Phone: 717-944-5541 • Fax: 717-944-1430 • www.analyticallab.com • www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

#### **ANALYTICAL RESULTS**

FORM 43 Biosolide

Workorder: 9892866 11-1973

Lab ID:

9892866001

Date Collected: 3/4/2011 08:24

Matrix: S

Solid

Sample ID: Biosolids, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
TCLP VOLATILE ORGANICS	6									
Benzene	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
2-Butanone	ND		ug/L	200	SW846 8260B			3/9/11 20:55	DJB	Α
Carbon Tetrachloride	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Chlorobenzene	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Chloroform	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
1,2-Dichloroethane	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
1,1-Dichloroethene	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Tetrachloroethene	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Trichloroethene	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Vinyl Chloride	ND		ug/L	20.0	SW846 8260B			3/9/11 20:55	DJB	Α
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
1,2-Dichloroethane-d4 (S)	99.5		%	62-133	SW846 8260B			3/9/11 20:55	DJB	Α
4-Bromofluorobenzene (S)	97.3		%	79-114	SW846 8260B			3/9/11 20:55	DJB	Α
Dibromofluoromethane (S)	92.4		%	78-116	SW846 8260B			3/9/11 20:55	DJB	Α
Toluene-d8 (S)	115		%	76-127	SW846 8260B			3/9/11 20:55	DJB	Α
PCBs										
Total Polychlorinated	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Biphenyl	ND		mg/kg	0.10	011040 00027	3/11/11	CJG	3/14/11 17.40	KJII	7.0
Aroclor-1016	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1221	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1232	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1242	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1248	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1254	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Aroclor-1260	ND		mg/kg	0.18	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
Decachlorobiphenyl (S)	116		%	30-150	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
Tetrachloro-m-xylene (S)	82.8		%	30-150	SW846 8082A	3/11/11	CJG	3/14/11 17:40	KJH	A8
WET CHEMISTRY										
Cyanide, Reactive	ND		ppm	10.1	SW-846 7.3CN	3/14/11	LMM	3/15/11 15:00	MLM	A10
Free Liquids	Negative		PP		SW846 9095	5, , ,, . ,		3/7/11 14:00	SDL	Α
Hexane Extractable Material	62500		mg/kg	1170	SW846 9071B			3/15/11 08:00	NJA	A
Ignitability	See	1	פיייפייי		SW846 1030			3/14/11 09:00	SDL	A
	comment				01400 0540 5					
Moisture	82.4		%	0.1	SM20-2540 G			3/8/11 14:50	KAK	Α
pH	7.73	2	pH_Units		SW846 9045D			3/5/11 04:00	SAD	Α
Phenolics	13.2		mg/kg	1.9	SW846 9066	3/15/11	KRK	3/16/11 03:19	KRK	Α

#### ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey







34 Dogwood Lane 
Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.analyticallab.com www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

#### **ANALYTICAL RESULTS**

Workorder: 9892866 11-1973

Lab ID:

9892866001

Date Collected: 3/4/2011 08:24

Matrix:

Solid

Sample ID:

Biosolids, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Silica Gel Treated HEM	19900	mg/kg	1170	SW846 9071B			3/15/11 08:00	NJA	Α
Solids, Total Volatile	68.1	%	1.0	SM20-2540 G			3/8/11 14:50	KAK	Α
Sulfide, Reactive	ND	ppm	6.3	SW846 7.3	3/14/11	LMM	3/14/11 14:30	NJA	
Total Solids	17.6	%	0.1	SM20-2540 G			3/8/11 14:50	KAK	Α
METALS									
Arsenic, Total	ND	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Barium, Total	392	mg/kg	5.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Cadmium, Total	4.3	mg/kg	2.5	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Chromium, Total	118	mg/kg	5.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Copper, Total	590	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Lead, Total	113	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Mercury, Total	1.7	mg/kg	1.1	SW846 7471B	3/11/11	MNP	3/11/11 12:13	MNP	A6
Molybdenum, Total	48.1	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Nickel, Total	61.4	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Selenium, Total	ND	mg/kg	25.3	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Silver, Total	8.2	mg/kg	2.5	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
Zinc, Total	1730	mg/kg	10.1	SW846 6010C	3/8/11	KMK	3/11/11 01:55	SRT	A1
TCLP METALS									
Arsenic, Total	ND	mg/L	0.018	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Barium, Total	0.092	mg/L	0.022	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Cadmium, Total	ND	mg/L	0.0044	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW	A2
Chromium, Total	0.024	mg/L	0.012	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW	A2
Copper, Total	ND	mg/L	0.022	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Iron, Total	0.32	mg/L	0.13	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Lead, Total	ND	mg/L	0.013	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW	A2
Manganese, Total	21.7	mg/L	0.012	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Mercury, Total	ND	mg/L	0.0020	SW846 7470A	3/9/11	MNP	3/10/11 10:33	MNP	A3
Nickel, Total	0.053	mg/L	0.044	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Selenium, Total	ND	mg/L	0.044	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
Silver, Total	ND	mg/L	0.0088	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2

#### ALS Environmental Laboratory Locations Across North America

Canada: Burlington - Calgary - Centre of Excellence - Edmonton - Fort McMurray - Fort St. John - Grande Prairie - London - Mississauga - Richmond Hill - Saskatoon - Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey







Now part of the ALS Group

34 Dogwood Lane Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430 www.analyticallab.com www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

#### **ANALYTICAL RESULTS**

Workorder: 9892866 11-1973

Lab ID:

9892866001

Date Collected: 3/4/2011 08:24

Matrix:

Solid

Sample ID:

Biosolids, 11-1973

Date Received: 3/4/2011 20:25

Zinc, Total	0.50									
			mg/L	0.044	SW846 6010C	3/9/11	KMK	3/14/11 13:17	MW O	A2
TCLP SEMI-VOLATILES										
mp-Cresol	ND		ug/L	160	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
o-Cresol	ND		ug/L	160	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
1,4-Dichlorobenzene	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
2,4-Dinitrotoluene	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Hexachlorobenzene	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Hexachlorobutadiene	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Hexachloroethane	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Nitrobenzene	ND		ug/L	60.0	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	<b>A</b> 9
Pentachlorophenol	ND		ug/L	320	SW846 82 <b>7</b> 0D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Pyridine	ND		ug/L	160	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
2,4,5-Trichlorophenol	ND		ug/L	160	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
2,4,6-Trichlorophenol	ND		ug/L	160	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	78.1		%	40-125	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
2-Fluorobiphenyl (S)	55.9		%	50-110	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
2-Fluorophenol (S)	35.6		%	20-75	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Nitrobenzene-d5 (S)	56.6		%	40-110	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Phenoi-d5 (S)	23.5		%	13-49	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
Terphenyl-d14 (S)	71		%	50-122	SW846 8270D	3/11/11	GEC	3/12/11 01:54	CGS	A9
TCLP PESTICIDES										
gamma-BHC	ND		ug/L	0.50	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Chlordane	ND		ug/L	10.0	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Endrin	ND		ug/L	0.50	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Heptachlor	ND		ug/L	0.50	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Heptachlor Epoxide	ND		ug/L	0.50	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Methoxychlor	ND		ug/L	0.50	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Toxaphene	ND		ug/L	20.0	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
Decachlorobiphenyl (S)	95.2		%	30-140	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
Tetrachloro-m-xylene (S)	96.2		%	30-123	SW846 8081B	3/10/11	GMG	3/11/11 23:44	KJH	A7
TCLP HERBICIDES										
2.4-D	ND		ug/L	4.0	SW846 8151A	3/10/11	GEC	3/13/11 22:17	KJH	A4
2,4,5- <b>T</b> P	ND		ug/L ug/L	4.0	SW846 8151A	3/10/11	GEC	3/13/11 22:17	KJH	A4 A4
£,7,0-11	110		ug/L	7.0	31.0100101A	3/10/11	GLU	JI 13/11 ZZ. [/	NJH	, 17

#### ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife · United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey







Now part of the ALS Group

34 Dogwood Lane - Middletown, PA 17057 - Phone: 717-944-5541 - Fax: 717-944-1430 - www.analyticallab.com - www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

#### **ANALYTICAL RESULTS**

Workorder: 9892866 11-1973

Lab ID:

9892866001

Date Collected: 3/4/2011 08:24

Matrix:

Solid

Sample ID:

Biosolids, 11-1973

Date Received: 3/4/2011 20:25

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4-Dichlorophenylacetic acid (S)	86.3		%	14-1 <b>7</b> 2	SW846 8151A	3/10/11	GEC	3/13/11 22:17	KJH	A4
ASTM LEACHATE PREP										
Final pH	8.51		pH_Units		D398 <b>7</b> -85			3/8/11 06:15	SDL	Α
ASTM LEACHATE										
Ammonia-N	70.8		mg/L	0.250	D6919-03			3/15/11 03:31	NJA	Α
Chemical Oxygen Demand (COD)	304		mg/L	15	EPA 410.4			3/18/11 08:50	LMM	Α
Chloride	8.9		mg/L	2.0	SW846 9056			3/10/11 05:53	MBW	Α
Cyanide, Total	ND		ppm	0.0050	SW846 9012B			3/15/11 11:34	MLM	A5
Fluoride	0.26		mg/L	0.20	SW846 9056			3/10/ <b>1</b> 1 05:53	MBW	Α
Halogen, Total Organic (TOX)	ND		ug/L	100	SW846 9020B			3/21/11 08:00	PAG	Α
Nitrate-N	ND		mg/L	0.20	SW846 9056			3/10/11 05:53	MBW	Α
Nitrite-N	ND		mg/L	0.20	SW846 9056			3/10/11 05:53	MBW	Α
Oil/Grease Hexane Extractable	6.0		mg/L	4.3	EPA 1664A			3/16/11 11:00	NJA	Α
Oil/Grease Silica Gel Treated	ND		mg/L	4.3	EPA 1664A			3/16/11 11:00	NJA	Α
pH in Leachate	7.61		pH_Units		SM4500B			3/10/11 06:13	SAD	Α
Sulfate	106		mg/L	2.0	SW846 9056			3/10/11 05:53	MBW	Α
Total Solids	350		mg/L	5	SM20-2540			3/10/11 11:05	KAK	Α
TCLP LEACHATE										
Extraction Fluid Used	1				SW846 1311			3/7/11 13:00	SDL	Α
Final pH	5.30		pH_Units		SW846 1311			3/7/11 13:00	SDL	Α
Preliminary pH after DI water	8.48		pH_Units		SW846 1311			3/7/11 13:00	SDL	Α
Preliminary pH after HCI	2.49		pH_Units		SW846 1311			3/7/11 13:00	SDL	Α

Sample Comments:



Attention:

Amy L. Morriss

815 Washington St. Reading PA 19601

Reported to: City of Reading WWTP c/o City Hall

### CERTIFICATE OF ANALYSIS

M.J. Reider Associates, Inc.



Form 43 Biosolids

Date of Report: 04/17/12

Lab ID:

0124-11-0029995

Date Collected:

08/02/11 08:15

Collected By:

Client

Date Received:

08/03/11 15:05

Sample Description: Belt Press Sludge 11-6825 (Form 43/Form U) Total Analysis

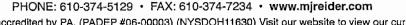
* Results Expressed as Dry Weight	Results	Detection Unit Limit		Procedure	Test Date	Test	Analyst
	Results		LIMIL			1 11116	
CHEMISTRY							
COLORMETRIC							
Cyanide, Reactive	<120	* mg/kg	120	SW846 7.3	08/08	15:59	jcl
OTHER							
Paint Filter Liquids Test	NoFreeLiquids		0	SW846 9095	08/22	10:25	ald
PHYSICAL							
Corrosivity	Not Corrosive		0	SW846 7.2	08/11	16:00	ald
Ignitability	Not Ignitable		0	sw846 1030	08/22	10:20	ald
pH	8.33	su	1	SW846 9045	08/05	12:00	EMW
Reactivity	Not Reactive		0	SW846 7.3	08/22	10:00	ald
RESIDUES							
Solids, Total Volatile	68.5	%	.1	SM 2540G	08/04	16:30	eps
Total Solids	20.3	%	.1	SM 2540G	08/04	16:30	eps
TITRATIONS							
Sulfide, Reactive	<250	* mg/kg	250	SW846 7.3	08/11	14:05	WHC
INORGANIC							
TOTAL							
Arsenic, Total	3	* mg/kg	0.5	EPA 200.9	08/10	18:26	rls
Barium, Total	436	* mg/kg	2.46	sw846 6010	08/05	11:32	lna
Cadmium, Total	4	* mg/kg	2	SW846 6010	08/05	11:32	lna
Chromium, Total	136	* mg/kg	2.46	SW846 6010	08/05	11:32	lna
Copper, Total	749	* mg/kg	4.93	sw846 6010	08/05	11:32	lna
Lead, Total	190	* mg/kg	4.9	SW846 6010	08/05	11:32	lna
Mercury, Total	2	* mg/kg	1	SW846 7471	08/10	11:14	jaw
Molybdenum, Total	79	* mg/kg	4.9	SW846 6010	08/05	11:32	lna
Nickel, Total	65.0	* mg/kg	2.46	SW846 6010	08/05	11:32	lna
Selenium, Total	5.9	* mg/kg	0.98	EPA 200.9	08/08	13:44	rls
Silver, Total	11	* mg/kg	2.5	SW846 6010	08/09	09:49	lna
Zinc, Total	1810	* mg/kg	2.46	SW846 6010	08/05	11:32	lna

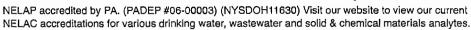
Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc.

Reviewed and Approved By


Richard Wolfe Technical Director


Page 1 of 2

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ENVIRONMENTAL TESTING LABORATORY 107 ANGELICA STREET, READING, PA 19611









M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 Date of Report:

04/17/12

Lab ID:

0124-11-0029995

Date Collected:

08/02/11 08:15

Collected By:

Client

Date Received:

08/03/11 15:05

Sample Description: Belt Press Sludge 11-6825 (Form 43/Form U) Total Analysis

* Results Expressed as Dry Weight	l as Dry Weight Results		Detection Limit	Procedure	Test Date	Test Time	Analyst
O&G/TPH							
GENERAL							
Oil and Grease	70900	* mg/kg	1230	EPA 1664	08/04	08:00	jls
Total Petroleum Hydrocarbons	23100	* mg/kg	1230	EPA 1664	08/05	08:00	JLS
ORGANIC							
EXTRACTION							
SW846 8082 Extraction	Complete		0	SW846 8082	08/10	06:30	kle
PCBS							
PCB-1016	<0.985	* mg/kg	0.985	sw846 8082	08/13	04:32	twh
PCB-1221	<0.985	* mg/kg	0.985	sw846 8082	08/13	04:32	twh
PCB-1232	<0.985	* mg/kg	0.985	SW846 8082	08/13	04:32	twh
PCB-1242	<0.985	* mg/kg	0.985	SW846 8082	08/13	04:32	twh
PCB-1248	<0.985	* mg/kg	0.985	SW846 8082	08/13	04:32	twh
PCB-1254	<0.985	* mg/kg	0.985	sw846 8082	08/13	04:32	twh
PCB-1260	<0.985	* mg/kg	0.985	sw846 8082	08/13	04:32	twh
COMMENTS:							

- 1 The laboratory pH was analyzed beyond the recommended 15 minute holding time.
- 2 This solid waste is not capable of causing fire through friction, absorption of moisture or spontaneous chemical change & doesn't burn vigorously or persistently creating a hazard.
- 3 This report has been amended to report the individual Arochlors.

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates,,Inc

Richard Wolfe Technical Director

Page 2 of 2

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.



ACIL Seal of Excellence



M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: Project Number:

08/23/11

Lab ID:

1157858

124-11-0029996 Date Collected: 08/02/11 08:15

Collected By:

CLIENT

Date Received:

08/03/11 15:05

Sample Desc: Belt Press Sludge 11-6825 (Form 43/Form U) TCLP Leachate Analysis

•								
			Rep.	Dilutn		Test	Test	
	Result	Unit 	Limit 	Factor	Procedure	Date	Time	Analyst
CHEMISTRY								
LEACHATE								
pH, Extract Fluid	4.97	su	.01	1	sw846 9040	08/05	07:30	WAL
pH, Leachate	5.54	su	.01	1	sw846 9040	08/05	07:30	JAW
INORGANIC								
EXTRACTION								
TCLP Preparation	Complete		0	0	EPA 1311	08/05	07:30	JAW
TCLP								
Arsenic, TCLP	<.05	mg/l	.05	1	sw846 6010	08/05	11:32	LNA
Barium, TCLP	<.05	mg/l	. 05	1	SW846 6010	08/05	11:32	LNA
Cadmium, TCLP	<.05	mg/l	.05	1	SW846 6010	08/05	11:32	LNA
Chromium, TCLP	<.05	mg/l	.05	1	sw846 6010	08/05	11:32	LNA
Copper, TCLP	<.05	mg/l	.05	1	SW846 6010	08/05	11:32	LNA
Iron, TCLP	0.2	mg/l	.2	1	SW846 6010	08/09	12:30	LNA
Lead, TCLP	<.15	mg/l	.15	1	sw846 6010	08/05	11:32	LNA
Mercury, TCLP	<.004	mg/L	.004	1	SW846 7470	08/10	11:14	WAL
Molybdenum, TCLP	<.1	mg/l	.1	1	sw846 6010	08/05	11:32	LNA
Nickel, TCLP	0.06	mg/l	.05	1	sw846 6010	08/05	11:32	LNA
Selenium, TCLP	<.05	mg/l	.05	1	SW846 6010	08/05	11:32	LNA
Silver, TCLP	<.05	mg/l	.05	1	SW846 6010	08/09	09:49	LNA
Zinc, TCLP	0.52	mg/l	.05	1	SW846 6010	08/05	11:32	LNA
ORGANIC								
ACID COMPOUNDS								
2,4,5-Trichlorophenol, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
2,4,6-Trichlorophenol, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
Cresols, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
Pentachlorophenol, TCLP	<250	ug/l	250	1	SW846 8270	08/10	08:00	MEB
BASE NEUTRALS								
2,4-Dinitrotoluene, TCLP	<50	ug/l	50	1	SW846 8270	08/10	00:80	MEB
Hexachlorobenzene, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB

Distribution of Reports:

Richard Wolfe

Technical Director

Reviewed and Approved by:

Page 1 of 3

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601



Date of Report:

08/23/11

Project Number: Lab ID:

1157858

124-11-0029996

Date Collected: 08/02/11 08:15

Collected By: Date Received: CLIENT 08/03/11 15:05

Sample Desc: Belt Press Sludge 11-6825 (Form 43/Form U) TCLP Leachate Analysis

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
Hexachlorobutadiene, TCLP	<50	ug/l	50	1	sw846 8270	08/10	08:00	MEB
Hexachloroethane, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
Nitrobenzene, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
Pyridine, TCLP	<50	ug/l	50	1	SW846 8270	08/10	08:00	MEB
EXTRACTION								
SM 6640B Extraction	Complete		0	0	SM 6640B	08/05	08:00	JLV
SW846 8081 Extraction	Complete		0	0	SW846 8081	08/11	09:00	KLE
SW846 8270 Extraction	Complete		0	0	sw846 8270	08/09	07:00	MEB
HERBICIDES								
2,4,5-TP Silvex, TCLP	<5	ug/l	5	1	SM 6640B	08/11	10:17	TWH
2,4-D, TCLP	<5	ug/l	5	1	SM 6640B	08/11	10:17	TWH
PESTICIDES								
Chlordane, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Endrin, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Heptachlor (and hydroxide), TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Heptachlor Epoxide, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Lindane, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Methoxychlor, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
Toxaphene, TCLP	<5	ug/l	5	1	SW846 8081	08/13	02:55	TWH
VOLATILES								
1,1-Dichloroethylene, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
1,2-Dichlorobenzene, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
1,2-Dichloroethane, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
1,4-Dichlorobenzene, TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
Benzene, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
Carbon Tetrachloride, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
Chlorobenzene, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
Chloroform, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF
Methyl Ethyl Ketone, ZHE TCLP	<200	ug/l	200	1	SW846 8260	08/05	14:21	GXF
Tetrachloroethylene, ZHE TCLP	<50	ug/l	50	1	SW846 8260	08/05	14:21	GXF

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 2 of 3

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601



Date of Report: 08/23/11 Project Number:

Lab ID:

1157858

124-11-0029997 Date Collected: 08/02/11 08:15

Collected By:

CLIENT

Date Received:

08/03/11 15:05

Sample Desc: Belt Press Sludge 11-6825 (Form 43/Form U) ASTM Leachate Analysis

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY					<del>_</del>			
NITROGENS								
Nitrogen, Ammonia	78	mg/l	5	50	D6919-03	08/08	19:39	JCL
OTHER						•		
Chemical Oxygen Demand	319	mg/l	25	1	HACH8000	08/09	07:00	ALD
Total Organic Halogens	50	ug/l	50	1	EPA 1650	08/05	13:51	ALD
PHYSICAL						·		
рН	7.85	su	1	1	SM4500H-B	08/05	15:30	EMW
RESIDUES						·		
Solids, Total Dissolved	317	mg/l	5	1	SM 2540c	08/05	15:15	EPS
Solids, Total Volatile	254	mg/l	5	1	EPA 160.4	08/09	15:50	EPS
INORGANIC								
EXTRACTION								
ASTM Preparation	Complete		0	0	ASTM	08/05	07:30	JAW
0&G/TPH								
GENERAL								
Oil and Grease	12	mg/l	10	1	EPA 1664	08/10	11:00	JLS
Total Petroleum Hydrocarbons	<10	mg/L	10	1	EPA 1664	08/12	14:00	JLS

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe

Technical Director

Page 1 of 1

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





# Additional Testing for bis(2-Ethylhexyl)phthalate or semivolatiles on Plant Influent, Effluent and Biosolids

2011 Influent Testing for TKN, Total Phosphorus, o-phosphate

DEP letter and NPDES amendment for mercury limit



## www.analyticaliab.com NELAP Accredited



ANALYTICAL RESULTS OF FUGLIC MATER. 34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

Workorder 9884044 11-152,164,165,167

Lab ID: Sample ID: 9884044001 Raw 11-152

Date Received: 1/5/2011 20:30

Waste Water

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES										
bis(2-Ethylhexyl)phthalate	23.8		ug/L	2.8	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	84		%	38-134	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
2-Fluorobiphenyl (S)	75		%	37-113	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
2-Fluorophenol (S)	43.7		%	17-73	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
Nitrobenzene-d5 (S)	79.5		%	37-124	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
Phenol-d5 (S)	30.9		%	11-53	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
Terphenyl-d14 (S)	20	1	%	33-125	EPA 625	1/7/11	GEC	1/12/11 11:06	AJL	B1
METALS										
Mercury, Total (XLow-level)	0.0002		mg/L	0.00007	EPA 245.1	1/10/11	MNP	1/10/11 11:15	MNP	A1

Sample Comments:

Anna G Milliken

Laboratory Manager



### www.analyticallab.com NELAP Accredited PA 22-293 NJ PA010



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

**ANALYTICAL RESULTS** 

Workorder 9884044 11-152,164,165,167

Lab ID: Sample ID: 9884044002 Final 11-164 Date Collected: 1/4/2011 09:33

Date Received: 1/5/2011 20:30

atrix: \

Waste Water

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	БУ	Cntr
SEMIVOLATILES										
bis(2-Ethylhexyl)phthalate	5.7		ug/L	2.9	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	81.7		%	38-134	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
2-Fluorobiphenyl (S)	61		%	37-113	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
2-Fluorophenol (S)	45.8		%	17-73	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
Nitrobenzene-d5 (S)	82.3		%	37-12 <b>4</b>	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
Phenol-d5 (S)	30.5		%	11-53	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
Terphenyl-d14 (S)	63.4		%	33-125	EPA 625	1/7/11	GEC	1/12/11 11:54	AJL	B1
METALS										
Mercury, Total (XLow-level)	ND		mg/L	0.00007	EPA 245.1	1/10/11	MNP	1/10/11 11:17	MNP	A1

Sample Comments:

Anna G Milliken

Laboratory Manager

Report ID: 9884044 Page 4 of 8



#### www.analyticallab.com NELAP Accredited PA 22-293 NJ PA010



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

### **ANALYTICAL RESULTS**

Workorder 9884043 11-148

Lab ID: 9884043001

Belt Press Biosolids 11-148 Sample ID:

Date Collected: 1/4/2011 09:00

Date Received: 1/5/2011 20:30

Solid

2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,6-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO											·
Acenaphthene   ND	Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Acenaphthylene	SEMIVOLATILES										
Anthracene	Acenaphthene	ND		ug/kg	548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Anthracene ND ug/kg 11000 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(a)anthracene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(a)anthracene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(a)apyrene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(a)byrene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(b)flooranthene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(g), h)perylene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(k)flooranthene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(k)flooranthene ND ug/kg 548 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Benzo(k)flooranthene ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Butylbenzylphthalate ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Butylbenzylphthalate ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Butylbenzylphthalate ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Bis(2-Chlorosthyd)methane ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 Bis(2-Chlorosthyd)methane ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphryl-phenylether ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphrene ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphrene ND ug/kg 1100 SW846 8270D 177/11 EGO 18/11 04:03 CGS A1 CChlorosphrene ND ug/kg 1100 SW84	Acenaphthylene	ND			.548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Benzo(a)anthracene   ND	Anthracene	ND			548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Benzo(a)parthracene	Benzidine	ND		ug/kg	11000	SW846 8270D	1/7/11		1/8/11 04:03	CGS	A1
Benzo(a)pyrene	Benzo(a)anthracene	ND		ug/kg	548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Benzo(p)fluoranthene   ND	Benzo(a)pyrene	ND			548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Benzo(g),hi)perylene	Benzo(b)fluoranthene	ND			548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Benzo(k)fluoranthene	Benzo(g,h,i)perylene	ND			548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
4-Bromophenyl-phenylether         ND         ug/kg         1100         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Butylbenzylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethoxyl)methane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethoxyl)methane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethy)ether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chlorophenyl-phenylther         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chlorophenyl-phenylether         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Lon-Butylphthalate         ND         ug/kg         2960         SW846 8270D		ND			548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Butylbenzylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           4-Chloro-3-methylphenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethoxylmethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethoxylmethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethoxylmethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chlorosphenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chrysene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Din-D-Ctylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         <	4-Bromophenyl-phenylether	ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
4-Chloro-3-methylphenol         ND         ug/kg         2960         SW846 8270D         1/1/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethylyether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroethylyether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Chloroisopropyl)ether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chlorophenol         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chlorophenyl-phenylether         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Lin-Butylphthalate         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-R-Dutylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11		ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03		A1
bis(2-Chloroethyl)ether   ND		ND			2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
bis(2-Chloroethyl)ether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         GGS         A1           bis(2-Chlorospopyl)ether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         GGS         A1           Chlorosphenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         GGS         A1           Johorophenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         GGS         A1           4-Chlorophenyl-phenylether         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         GGS         A1           Chrysene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO	bis(2-Chloroethoxy)methane	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
bis(2-Chloroisopropyl)ether         ND         ug/kg         1100         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Chloronaphthalene         ND         ug/kg         1100         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Jhlorophenol         ND         ug/kg         2960         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           4-Chlorophenyl-phenylether         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Chrysene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1/2-Dichlorobenzene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1/2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO		ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Chloronaphthalene	bis(2-Chloroisopropyl)ether	ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
4-Chlorophenyl-phenylether         ND         ug/kg         1100         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Chrysene         ND         ug/kg         548         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Dotylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dibenzo(a,h)anthracene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorobenzene         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO		ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
4-Chlorophenyl-phenylether         ND         ug/kg         1100         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Chrysene         ND         ug/kg         548         SW846 8270D         17/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Dotylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dibenzo(a,h)anthracene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorobenzene         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO	Chlorophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Chrysene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           Di-n-Butylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           Di-n-Octylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           Dibenzo(a,h)anthracene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           1,3-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11         04:03         CGS         A1           2,4-Dichlorobenzene         ND		ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Di-n-Butylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Di-n-Octylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dibenzo(a,h)anthracene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,3-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorobenzene         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinthylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO	Chrysene	ND				SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Di-n-Octylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dibenzo(a,h)anthracene         ND         ug/kg         657         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,3-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           3,3-Dichlorobenzidine         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorobenzidine         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11 <t< td=""><td>Di-n-Butylphthalate</td><td>ND</td><td></td><td></td><td>1100</td><td>SW846 8270D</td><td>1/7/11</td><td>EGO</td><td>1/8/11 04:03</td><td>CGS</td><td>A1</td></t<>	Di-n-Butylphthalate	ND			1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
1,2-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,3-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           3,3-Dichlorobenzidine         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorophenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Diethylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO	- ·	ND			2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
1,3-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           3,3-Dichlorobenzidine         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorobenzidine         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Diethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO <td>Dibenzo(a,h)anthracene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>657</td> <td>SW846 8270D</td> <td>1/7/11</td> <td>EGO</td> <td>1/8/11 04:03</td> <td>CGS</td> <td>A1</td>	Dibenzo(a,h)anthracene	ND		ug/kg	657	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
1,4-Dichlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           3,3-Dichlorobenzidine         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorophenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Diethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO	1,2-Dichlorobenzene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
3,3-Dichlorobenzidine         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dichlorophenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Diethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphthalate         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO </td <td>1,3-Dichlorobenzene</td> <td>ND</td> <td></td> <td>ug/kg</td> <td>1100</td> <td>SW846 8270D</td> <td>1/7/11</td> <td>EGO</td> <td>1/8/11 04:03</td> <td>CGS</td> <td>A1</td>	1,3-Dichlorobenzene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,4-Dichlorophenol       ND       ug/kg       2960       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Diethylphthalate       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphenol       ND       ug/kg       2960       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphthalate       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphthalate       ND       ug/kg       5910       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphenol       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphenol       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         2,4-Dimethylphenol       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         1,2-Dimethylphenol       ND <td< td=""><td>1,4-Dichlorobenzene</td><td>ND</td><td></td><td>ug/kg</td><td>1100</td><td>SW846 8270D</td><td>1/7/11</td><td>EGO</td><td>1/8/11 04:03</td><td>CGS</td><td>A1</td></td<>	1,4-Dichlorobenzene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Diethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dimethylphenol         ND         ug/kg         296C         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dimethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,6-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO	3,3-Dichlorobenzidine	ND		ug/kg	5910	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,4-Dimethylphenol         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Dimethylphthalate         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,6-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO	2,4-Dichlorophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Dimethylphthalate	Diethylphthalate	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,4-Dinitrophenol         ND         ug/kg         5910         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,6-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO <t< td=""><td>2,4-Dimethylphenol</td><td>ND</td><td></td><td>ug/kg</td><td>2960</td><td>SW846 8270D</td><td>1/7/11</td><td>EGO</td><td>1/8/11 04:03</td><td>CGS</td><td>A1</td></t<>	2,4-Dimethylphenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,4-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           2,6-Dinitrotoluene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO	Dimethylphthalate	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,6-Dinitrotoluene       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         1,2-Diphenylhydrazine       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         bis(2-Ethylhexyl)phthalate       37500       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Fluoranthene       596       ug/kg       548       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Fluorene       ND       ug/kg       548       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Hexachlorobenzene       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Hexachlorobutadiene       ND       ug/kg       1100       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Hexachlorocyclopentadiene       ND       ug/kg       2960       SW846 8270D       1/7/11       EGO       1/8/11 04:03       CGS       A1         Hexachloroethane       ND       u	2,4-Dinitrophenol	ND		ug/kg	5910	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
1,2-Diphenylhydrazine         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO	2,4-Dinitrotoluene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
bis(2-Ethylhexyl)phthalate         37500         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	2,6-Dinitrotoluene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Fluoranthene         596         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	1,2-Diphenylhydrazine			ug/kg	1100		1/7/11	EGO	1/8/11 04:03		A1
Fluorene         ND         ug/kg         548         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	bis(2-Ethylhexyl)phthalate			ug/kg				EGO	1/8/11 04:03		
Hexachlorobenzene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	Fluoranthene			ug/kg			1/7/11		1/8/11 04:03		
Hexachlorobutadiene         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	Fluorene										
Hexachlorocyclopentadiene         ND         ug/kg         2960         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1           Hexachloroethane         ND         ug/kg         1100         SW846 8270D         1/7/11         EGO         1/8/11 04:03         CGS         A1	Hexachlorobenzene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Hexachloroethane ND ug/kg 1100 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	Hexachlorobutadiene	ND		ug/kg	1100		1/7/11	EGO	1/8/11 04:03	CGS	A1
	Hexachlorocyclopentadiene	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03		
Indeno(1,2,3-cd)pyrene ND ug/kg 548 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	Hexachloroethane	ND		ug/kg	1100		1/7/11	EGO	1/8/11 04:03	CGS	A1
30.0	Indeno(1,2,3-cd)pyrene	ND		ug/kg	548		1/7/11	EGO	1/8/11 04:03	CGS	A1
Isophorone ND ug/kg 1100 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	Isophorone	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
^o Methyl-4,6-dinitrophenol ND ug/kg 2960 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	2 Methyl-4,6-dinitrophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
hthalene 1220 ug/kg 548 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	hthalene	1220		ug/kg	548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Nitrobenzene ND ug/kg 1310 SW846 8270D 1/7/11 EGO 1/8/11 04:03 CGS A1	Nitrobenzene	ND		ug/kg	1310	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1

### www.analyticaliab.com **NELAP Accredited** PA 22-293



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

Workorder 9884043 11-148

Lab ID: 9884043001

Belt Press Biosolids 11-148 Sample ID:

ANALYTICAL RESULTS AN 14 2011

Date Collected: 1/4/2011 09:00 Matrix:

Date Received: 1/5/2011 20:30

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
2-Nitrophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
4-Nitrophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
N-Nitrosodimethylamine	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
N-Nitroso-di-n-propylamine	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
N-Nitrosodiphenylamine	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Pentachlorophenol	ND		ug/kg	5910	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Phenanthrene	1670		ug/kg	548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Phenol	2960		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Pyrene	656		ug/kg	548	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
1,2,4-Trichlorobenzene	ND		ug/kg	1100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2,4,6-Trichlorophenol	ND		ug/kg	2960	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	92.2		%	37-123	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2-Fluorobiphenyl (S)	86.3		%	45-105	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
2-Fluorophenol (S)	82		%	35-104	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
Nitrobenzene-d5 (S)	82.1		%	41-110	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
nol-d5 (S)	84.6		%	40-100	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
erphenyl-d14 (S)	89.1		%	38-113	SW846 8270D	1/7/11	EGO	1/8/11 04:03	CGS	A1
VET CHEMISTRY										
Moisture	81.7		%	0.1	SM20-2540 G			1/7/11 10:21	AM	Α
Total Solids	18.3		%	0.1	SM20-2540 G			1/7/11 10:21	AM	Α

### Sample Comments:

One or more of the GCMS semi-volatile internal standards were recovered at <50%.

Anna G Milliken

Laboratory Manager



#### www.analyticallab.com **NELAP Actredited** PA 22-293 NJ PAO10



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

ANALYTICAL RESULTS

FEB 04 2011

Workorder 9886043 11-607/11-594

Lab ID:

9886043002

Date Collected: 1/18/2011 09:11

Matrix:

Waste Water

Sample ID:

Raw 11-594

Date Received: 1/19/2011 17:50

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES	,				<u> </u>					
bis(2-Ethylhexyl)phthalate	26.9		ug/L	2.8	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	103		%	38-134	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
2-Fluorobiphenyl (S)	85.6		%	37-113	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
2-Fluorophenol (\$)	38.6		%	17-73	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
Nitrobenzene-d5 (S)	78.4		%	37-124	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
Phenol-d5 (S)	29.8		%	11-53	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1
Terphenyl-d14 (S)	144	1	%	33-125	EPA 625	1/24/11	GEC	1/27/11 17:16	CGS	A1

Sample Comments:

Laboratory Manager



### www.analyticallab.com NELAP Accredited PA 22-293 NJ PA010



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

**ANALYTICAL RESULTS** 

FEB 0 4 2011

Workorder 9886043 11-607/11-594

Lab ID:

9886043001

Date Collected: 1/18/2011 10:03

Matrix:

Waste Water

Sample ID:

Final 11-607

Date Received: 1/19/2011 17:50

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES										
bis(2-Ethylhexyl)phthalate	6.5		ug/L	2.9	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	102		%	38-134	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1
2-Fluorobiphenyl (S)	83.9		%	37-113	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1
2-Fluorophenol (S)	49.1		%	17-73	EPA 625	1/24/11	GEC	1/27/11 10:49	ÇGS	A1
Nitrobenzene-d5 (S)	82.1		%	37-124	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1
Phenol-d5 (S)	33		%	11-53	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1
Terphenyl-d14 (S)	84.4		%	33-125	EPA 625	1/24/11	GEC	1/27/11 10:49	CGS	A1

Sample Comments:

Anna G Milliken

Laboratory Manager

Report ID: 9886043 Page 3 of 6



### www.analyticaliab.com **NELAP Accredited** PA 22-293



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541

**ANALYTICAL RESULTS** 

Workorder 9887678 11-1037/1040/1043/1041

Lab ID:

9887678001

Date Collected: 2/1/2011 10:12

Matrix:

Waste Water

Sample ID:

Raw 11-1037

Date Received: 2/2/2011 17:35

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES	· · · · · · ·									
bis(2-Ethylhexyl)phthalate	22.0		ug/L	2.8	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	76.2		%	38-134	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	В1
2-Fluorobiphenyl (S)	79		%	37-113	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
2-Fluorophenol (S)	42.4		%	17-73	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
Nitrobenzene-d5 (S)	95.5		%	37-124	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
Phenol-d5 (S)	31		%	11-53	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
Terphenyl-d14 (S)	319	1	%	33-125	EPA 625	2/8/11	MPP	2/9/11 17:23	DHF	B1
METALS										
Mercury, Total (XLow-level)	0.0002		mg/L	0.00007	EPA 245.1	2/10/11	MNP	2/10/11 11:36	MNP	A1

### Sample Comments:

One or more of the GCMS semi-volatile internal standards were recovered at <50%. The sample was reanalyzed with similar results indicating a sample matrix interference.

Laboratory Manager



### www.anaiyticaliab.com PA 22-293 NJ PA010



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541

FEB 15 2011 ANALYTICAL RESULTS

Workorder 9887678 11-1037/1040/1043/1041

Lab ID:

9887678002

Date Collected: 2/1/2011 10:17

Matrix:

Waste Water

Sample ID:

Final 11-1040

Date Received: 2/2/2011 17:35

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES										
bis(2-Ethylhexyl)phthalate	3.8		ug/L	2.8	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	68.5		%	38-134	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
2-Fluorobiphenyl (S)	73.9		%	37-113	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
2-Fluorophenol (S)	45.3		%	17-73	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
Nitrobenzene-d5 (S)	79.1		%	37-124	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
Phenol-d5 (S)	29.5		%	11-53	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	B1
Terphenyl-d14 (S)	83.2		%	33-125	EPA 625	2/8/11	MPP	2/9/11 16:33	DHF	В1
METALS										
Mercury, Total (XLow-level)	ND		mg/L	0.00007	EPA 245.1	2/10/11	MNP	2/10/11 11:38	MNP	Α1

Sample Comments:

Laboratory Manager



### www.analyticallab.com NELAP Accredited PA 22-293 NJ PA010



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

### **ANALYTICAL RESULTS**

FEB 15 2011

Workorder 9887682 11-1022

Lab ID: 9887682001

Date Collected: 2/2/2011 08:22

Matrix: Solid

Sample ID: Belt Press Sludge 11-1022 Date Received: 2/2/2011 17:35

Parameters	Results	Flag Units	RDL	Method	Prepared	1 Ву	Analyzed	Ву	Cntr	
SEMIVOLATILES										
Acenaphthene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Acenaphthylene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Anthracene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzidine	ND	ug/kg	22100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzo(a)anthracene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzo(a)pyrene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzo(b)fluoranthene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzo(g,h,i)perylene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Benzo(k)fluoranthene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
4-Bromophenyl-phenylether	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Butylbenzylphthalate	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
4-Chloro-3-methylphenol	ND	ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
bis(2-Chloroethoxy)methane	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
bis(2-Chloroethyl)ether	ND	ug/kg	2210	SW846 8270D	2/4/11	EG <b>O</b>	2/9/11 03:32	CGS	A1	
bis(2-Chloroisopropyl)ether	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Chloronaphthalene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Z-Chlorophenol	ND	ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
4-Chlorophenyl-phenylether	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Chrysene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Di-n-Butylphthalate	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Di-n-Octylphthalate	ND	ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Dibenzo(a,h)anthracene	ND	ug/kg	1330	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
1,2-Dichlorobenzene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
1,3-Dichlorobenzene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
1,4-Dichlorobenzene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
3,3-Dichlorobenzidine	ND		11900	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2,4-Dichlorophenol	ND	ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Diethylphthalate	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2,4-Dimethylphenol	ND	ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Dimethylphthalate	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2,4-Dinitrophenol	ND		11900	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2,4-Dinitrotoluene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2,6-Dinitrotoluene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
1,2-Diphenylhydrazine	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
bis(2-Ethylhexyl)phthalate	33300	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Fluoranthene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Fluorene	ND	ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Hexachlorobenzene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Hexachlorobutadiene	ND	ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Hexachlorocyclopentadiene	ND		5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Hexachloroethane	ND		2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Indeno(1,2,3-cd)pyrene	ND	• •	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Isophorone	ND		2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS		
1ethyl-4,6-dinitrophenol	ND		5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS		
aphthalene	1280	0 0	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS		
Nitrobenzene	ND	• •	2650	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS		
	-	-33								

### www.analyticaliab.com **NELAP Accredited** PA 22-293



34 Dogwood Lane - Middletown, PA 17057 Phone: 717-944-5541 Fax: 717-944-1430

### ANALYTICAL RESULTS

Workorder 9887682 11-1022

Lab ID: 9887682001

Sample ID:

Belt Press Sludge 11-1022

Date Collected: 2/2/2011 08:22

Date Received: 2/2/2011 17:35

Solid

2-Nitrophenol	ND		ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
4-Nitrophenol	ND ´		ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
N-Nitrosodimethylamine	ND		ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
N-Nitroso-di-n-propylamine	ND		ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
N-Nitrosodiphenylamine	ND		ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Pentachlorophenol	ND		ug/kg	11900	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	Α1	
Phenanthrene	1260		ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Phenol	ND		ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Pyrene	ND		ug/kg	1100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	<b>A</b> 1	
1,2,4-Trichlorobenzene	ND		ug/kg	2210	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	<b>A</b> 1	
2,4,6-Trichlorophenol	ND		ug/kg	5960	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	<b>A</b> 1	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr	
2,4,6-Tribromophenol (S)	69.8		%	37-123	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2-Fluorobiphenyl (S)	67		%	45-105	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
2-Fluorophenol (S)	62.5		%	35-104	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
'itrobenzene-d5 (S)	62.8		%	41-110	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	· · · ·
nenol-d5 (S)	59.3		%	40-100	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	A1	
Terphenyl-d14 (S)	56.7		%	38-113	SW846 8270D	2/4/11	EGO	2/9/11 03:32	CGS	<b>A</b> 1	
WET CHEMISTRY											
Moisture	77.4		%	0.1	SM20-2540 G			2/3/11 14:20	KAK	Α	
Total Solids	22.6		%	0.1	SM20-2540 G			2/3/11 14:20	KAK	Α	

Sample Comments:

Anna G Milliken

Laboratory Manager





34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DOD ELAP: A2LA 0818.01 State Certifications: CT PH-0224 , DE ID 11 , GA 914 , MA PA0102 , MD 128 , LA 04162 , VA 421 , WY EPA Region 8 , WV 343

#### ANALYTICAL RESULTS

Workorder 9890014 11-1476/1488/1489/1491

Lab ID: Sample ID: 9890014001

RC 11-1476

Date Collected: 2/16/2011 08:39

Date Received: 2/16/2011 19:00

Waste Water

								1.7			
Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	11
SEMIVOLATILES											
bis(2-Ethylhexyl)phthalate	22.7		ug/L	14.2	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr	
2,4,6-Tribromophenol (S)	73.1		%	38-134	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
2-Fluorobiphenyl (S)	85.1		%	37-113	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
2-Fluorophenol (S)	45.2		%	17-73	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
Nitrobenzene-d5 (S)	108		%	37-124	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
Phenol-d5 (S)	33.2		%	11-53	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
Terphenyl-d14 (S)	93.1		%	33-125	EPA 625	2/22/11	GEC	2/24/11 00:59	CGS	B1	
METALS											
Mercury, Total (XLow-level)	0.0002		mg/L	0.00007	EPA 2 <b>4</b> 5.1	2/25/11	MNP	2/25/11 09:45	MNP	A1	

#### mple Comments:

This sample was analyzed at a dilution in the 625 analysis due to sample matrix interference. Reporting limits were adjusted accordingly.

Anna G Milliken
Technical Manager

Report ID: 9890014 Page 3 of 8







34 Dogwood Lane • Middletown, PA 17057 • Phone: 717-944-5541 • Fax: 717-944-1430 • www.analyticallab.com • www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

### ANALYTICAL RESULTS

Workorder 9890014 11-1476/1488/1489/1491

Lab ID: Sample ID: 9890014002

FC 11-1488

Date Collected: 2/16/2011 09:20

Date Received: 2/16/2011 19:00

Waste Water

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr	
SEMIVOLATILES											
bis(2-Ethylhexyl)phthalate	4.0		ug/L	2.8	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr	
2,4,6-Tribromophenol (S)	88.9		%	38-134	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
2-Fluorobiphenyl (S)	81.8		%	37-113	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
2-Fluorophenol (S)	43.8		%	17-73	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
Nitrobenzene-d5 (S)	89.5		%	37-124	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
Phenol-d5 (S)	29		%	11-53	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
Terphenyl-d14 (S)	79.1		%	33-125	EPA 625	2/22/11	GEC	2/23/11 20:10	CGS	B1	
METALS											
Mercury, Total (XLow-level)	ND		mg/L	0.00007	EPA 245.1	2/25/11	MNP	2/25/11 09:47	MNP	A1	

sample Comments:

Technical Manager

Report ID: 9890014







34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.analyticallab.com = www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

# ANALYTICAL RESULTS RECEIVED

Workorder 9895461 11-2408/11-2420

Lab ID:

9895461001

DEPT OF PUBLIC WOPKS

Waste Water

Date Received: 3/18/2011 19:11 Sample ID: RAW 11-2408

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
SEMIVOLATILES										
Acenaphthene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Acenaphthylene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Anthracene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzidine	ND	1	ug/L	113	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzo(a)anthracene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzo(a)pyrene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzo(b)fluoranthene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzo(g,h,i)perylene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Benzo(k)fluoranthene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
4-Bromophenyl-phenylether	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Butylbenzylphthalate	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
bis(2-Chloroethoxy)methane	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
bis(2-Chloroethyl)ether	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
his(2-Chloroisopropyl)ether	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
hloronaphthalene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
4-Chlorophenyl-phenylether	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Chrysene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Di-n-Butylphthalate	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Di-n-Octylphthalate	ND		ug/L	30.2	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Dibenzo(a,h)anthracene	ND		ug/L	7.5	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
3,3-Dichlorobenzidine	ND		ug/L	60.4	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Diethylphthalate	ND		ug/L	30.2	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Dimethylphthalate	ND		ug/L	30.2	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
2,4-Dinitrotoluene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
2,6-Dinitrotoluene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
1,2-Diphenylhydrazine	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
bis(2-Ethylhexyl)phthalate	26.8		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Fluoranthene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Fluorene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Hexachlorobenzene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Hexachlorobutadiene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Hexachlorocyclopentadiene	ND		ug/L	30.2	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Hexachloroethane	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
ndeno(1,2,3-cd)pyrene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
sophorone	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Naphthalene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Vitrobenzene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
I-Nitrosodimethylamine	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
N-Nitroso-di-n-propylamine	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
N-Nitrosodiphenylamine	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1

### ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Page 3 of 9 Report ID: 9895461







34 Dogwood Lane 🗷 Middletown, PA 17057 🗷 Phone: 717-944-5541 🗷 Fax: 717-944-1430 🗷 www.analyticallab.com 🗷 www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 QoD ELAP: A2LA 0818.01

State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LACTION VA 421, WY EPA Region 8, WV 343

### ANALYTICAL RESULTS

MAR 3 1 2011

DEPT. OF PUBLIC WORKS

Workorder 9895461 11-2408/11-2420

Lab ID:

9895461001

Date Collected: 3/16/2011 08:12

Matrix:

Waste Water

Sample ID:

RAW 11-2408

Date Received: 3/18/2011 19:11

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Phenanthrene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Pyrene	ND		ug/L	5.7	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
1,2,4-Trichlorobenzene	ND		ug/L	11.3	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	83		%	38-134	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
2-Fluorobiphenyl (S)	76.8		%	37-113	EPA 625	3/22/11	LEH.	3/25/11 17:49	DHF	A1
2-Fluorophenol (S)	52.7		%	17-73	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Nitrobenzene-d5 (S)	81		%	37-124	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Phenol-d5 (S)	28		%	11-53	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1
Terphenyl-d14 (S)	148	2	%	33-125	EPA 625	3/22/11	LEH	3/25/11 17:49	DHF	A1

#### Sample Comments:

ীis sample was analyzed at a dilution in the semivolatile GC/MS analysis due to sample matrix interference. Reporting limits were usted accordingly.

One or more of the GCMS semi-volatile internal standards were recovered at <50%. The sample was analyzed twice with similar results indicating a sample matrix interference.

Anna G Milliken

Technical Manager

ann mille







34 Dogwood Lane ■ Middletown, PA 17057 ■ Phone: 717-944-5541 ■ Fax: 717-944-1430 ■ www.analyticallab.com ■ www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

### ANALYTICAL RESULTS

RECEIVED

Workorder 9895461 11-2408/11-2420

9895461002

MAR 3 1 2011

DEPT Matrix:

Date Collected: 3/16/2011 19:11

Matrix:

2/18/2011 19:11

Waste Water

Sample ID: FINAL 11-2420

Lab ID:

Parameters	Results	Flag	Units	RDL	Method	Prepared	І Ву	Analyzed	Ву	Cntr	
SEMIVOLATILES											
Acenaphthene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Acenaphthylene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Anthracene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzidine	ND	1	ug/L	28.3	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzo(a)anthracene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzo(a)pyrene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzo(b)fluoranthene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzo(g,h,i)perylene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Benzo(k)fluoranthene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
4-Bromophenyl-phenylether	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Butylbenzylphthalate	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
bis(2-Chloroethoxy)methane	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
bis(2-Chloroethyl)ether	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
bis(2-Chloroisopropyl)ether	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
loronaphthalene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
anlorophenyl-phenylether	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	<b>A</b> 1	
Chrysene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	<b>A</b> 1	
Di-n-Butylphthalate	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Di-n-Octylphthalate	ND		ug/L	7.5	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Dibenzo(a,h)anthracene	ND		ug/L	1.9	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
3.3-Dichlorobenzidine	ND		ug/L	15.1	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Diethylphthalate	ND		ug/L	7.5	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Dimethylphthalate	ND		ug/L	7.5	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
2,4-Dinitrotoluene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
2,6-Dinitrotoluene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
1,2-Diphenylhydrazine	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
bis(2-Ethylhexyl)phthalate	6.7		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Fluoranthene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Fluorene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	<b>A</b> 1	
Hexachlorobenzene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Hexachlorobutadiene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Hexachlorocyclopentadiene	ND		ug/L	7.5	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Hexachloroethane	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Indeno(1,2,3-cd)pyrene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Isophorone	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Naphthalene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
Nitrobenzene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
N-Nitrosodimethylamine	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
N-Nitroso-di-n-propylamine	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1	
N-Nitrosodiphenylamine	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01		A1	

### ALS Environmental Laboratory Locations Across North America

Canada: Burlington · Calgary · Centre of Excellence · Edmonton · Fort McMurray · Fort St. John · Grande Prairie · London · Mississauga · Richmond Hill · Saskatoon · Thunder Bay Vancouver Waterloo · Winnipeg · Yellowknife United States: Cincinnati · Everett · Fort Collins · Holland · Houston · Middletown · Salt Lake City · Spring City · York Mexico: Monterrey

Report ID: 9895461 Page 5 of 9







34 Dogwood Lane = Middletown, PA 17057 = Phone: 717-944-5541 = Fax: 717-944-1430 = www.analyticallab.com = www.alsglobal.com

NELAP Certifications: NJ PA010, NY 11759, PA 22-293 DoD ELAP: A2LA 0818.01 State Certifications: CT PH-0224, DE ID 11, GA 914, MA PA0102, MD 128, LA 04162, VA 421, WY EPA Region 8, WV 343

### **ANALYTICAL RESULTS**

Date Collected: 3/16/2011 08:55

Waste Water

Workorder 9895461 11-2408/11-2420

Sample ID: FINAL 11-2420

Lab ID:

9895461002

Date Received: 3/18/2011 19:11

Parameters	Results	Flag	Units	RDL	Method	Prepared	Ву	Analyzed	Ву	Cntr
Phenanthrene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
Pyrene	ND		ug/L	1.4	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
1,2,4-Trichlorobenzene	ND		ug/L	2.8	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
Surrogate Recoveries	Results	Flag	Units	Limits	Method	Prepared	Ву	Analyzed	Ву	Cntr
2,4,6-Tribromophenol (S)	78.5		%	38-134	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
2-Fluorobiphenyl (S)	66.4		%	37-113	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
2-Fluorophenol (S)	43.3		%	17-73	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
Nitrobenzene-d5 (S)	72.3		%	37-124	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
Phenol-d5 (S)	27		%	11-53	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1
Terphenyl-d14 (S)	131	3	%	33-125	EPA 625	3/22/11	LEH	3/25/11 15:01	DHF	A1

Sample Comments:

Anna G Milliken Technical Manager

ann mille

Report ID: 9895461



## M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

04/18/11

Project Number:

1146728

Lab ID:

124-11-0012724 Date Collected: 04/05/11 08:50

Collected By:

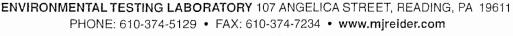
Client

Date Received:

04/06/11 14:50

Sample Desc: 11-3027 Raw

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	04/12	17:59	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	04/12	07:00	MEB


Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1









## M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEIVED

APR 2 1 2011

DEPT. OF PUBLIC WORKS

Date of Report: 04/18/11

Project Number:

1146728

Lab ID:

124-11-0012725 04/05/11 09:37

Date Collected: Collected By:

Client

Date Received:

04/06/11 14:50

Sample Desc: 11-3039 Final

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	04/12	17:59	MEB
EXTRACTION  EPA 625 Extraction	Complete		0	0	EPA 625	04/12	07:00	MEB '

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







### **VERTIFICATE OF ANALTOIO** M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: 04/26/11

Project Number:

1146985 124-11-0013140

Lab ID:

Date Collected: 04/06/11 08:30

Collected By:

Client

Date Received:

04/08/11 14:20

Sample Desc: Belt Press Sludge 11-3099

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate EXTRACTION	<10	mg/kg	10	20	sw846 8270	04/20	06:56	MEB
SW846 8270 Extraction	Complete		0	0	SW846 8270	04/18	14:00	MEB

### COMMENTS

The elevated reporting limits for the semi-volatiles was due to 21 sample matrix interference.

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







### M.J. Reider Associates, Inc.



**AMENDED** 

Date of Report:

05/03/11 1147559

Project Number: Lab ID:

124-11-0014678

Date Collected:

04/19/11 08:45

Collected By:

CLIENT

Date Received:

04/20/11 15:25

MAY 0 6 2011

Sample Desc: Raw 11-3475 (Composite)

Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall

815 Washington St.

Reading PA 19601

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	0.0002	mg/l	.0001	1	EPA 245.1	04/27	11:55	<b>WAL</b>
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	04/29	01:09	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	04/21	08:00	MEB

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







## PLIEBLICALL OF MINALIDID M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St.

Reading PA 19601

Date of Report:

04/29/11

Project Number:

1147559

Lab ID:

124-11-0014679

Date Collected:

04/19/11 08:45

Collected By:

Client

Date Received:

04/20/11 15:25

Sample Desc: Final 11-3488 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	04/27	11:55	JAW
ORGANIC BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate EXTRACTION	<10	ug/l	10	1	EPA 625	04/29	01:09	MEB
EPA 625 Extraction	Complete		0	0	EPA 625	04/21	08:00	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







## CENTIFICATE OF ANALTOIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St.

Reading PA 19601

Date of Report:

05/19/11

Project Number:

1149367 124-11-0016456

Lab ID: Date Collected:

05/03/11 09:08

Collected By:

Client

Date Received:

05/04/11 15:05

Sample Desc: Raw 11-3902 (Lab, Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL  Mercury, Total  ORGANIC	0.0003	mg/l	.0001	1	EPA 245.1	05/11	11:00	JAW
BASE NEUTRALS  Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	05/10	11:09	MEB
EXTRACTION  EPA 625 Extraction	Complete	-31 -	0	0	EPA 625	,	07:00	

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall

### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



MAY 2 0 2011 DEPT. OF PUBLIC WORKS

Date of Report: Project Number:

05/19/11 1149367

Lab ID:

124-11-0016457

Date Collected:

05/03/11 09:55

Collected By:

Client

Date Received:

05/04/11 15:05

Sample Desc: Final 11-3918 (Lab, Composite)

815 Washington St.

Reading PA 19601

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	05/11	11:00	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	05/10	11:09	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	05/10	07:00	KLE

Distribution of Reports:

Richard Wolfe Technical Director

Page 1 of 1







### CERTIFICATE OF ANALTOIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

06/17/11

Project Number: 1152415

Lab ID:

124-11-0021383

Date Collected: 06/07/11 09:25

Collected By:

Client

Date Received:

06/08/11 15:15

Sample Desc: Raw 11-5044 (Composite)

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
CHEMISTRY								
COLORMETRIC								
Phosphorus as P, Total	7.8	mg/l	.5	10	SM 4500P-E	06/10	08:10	ALD
NITROGENS								
Nitrogen, Total Kjeldahl	58	mg/l	25	5	EPA 351.2	06/09	13:19	JCL
INORGANIC								
TOTAL								
Mercury, Total	0.0001	mg/l	.0001	1	EPA 245.1	06/15	11:38	JAW
ORGANIC								
SE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	06/14	07:00	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	06/14	07:00	KLE

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







### CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St.

Reading PA 19601

Date of Report: Project Number:

06/17/11 1152415

Lab ID:

124-11-0021389

Date Collected: 06/07/11 09:56

Collected By:

Client

Date Received:

06/08/11 15:15

Sample Desc: FC 11-5057 (Composite)

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	06/15	11:38	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	06/14	07:00	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	06/14	07:00	KLE

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







# M.J. Reider Associates, Inc.



Attention:

Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601 JUN 24 2011

Date of Report: 06/17/11 Project Number: 1152416

Lab ID: 0124-11-0021381 Account Rep: Richard Wolfe

Date Received: 06/08/11
Date Collected: 06/08/11
Time Collected: 10:30
Collected By: Client

Sample Description: Biosolids 11-5059 (Composite)

* Results expressed as Dry Weight

			Detectio	n	Test	Test		
	Results	Unit	Limit	Procedure	Date	Time	Analyst	
CHEMISTRY								
RESIDUES								
Total Solids	20.0	%	1	SM 2540G	06/13	12:30	eps	
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<25.0	* mg/kg	25.0	sw846 8270	06/15	06:30	meb	
EXTRACTION								
SW846 8270 Extraction	Complete		0	SW846 8270	06/15	06:30	kle	
ENTS:								

1 - The elevated reporting limits for the semi-volatiles was due to sample matrix interference.

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By:

Technical Director

Page 1 of 1







### PERMITORIE OF ANALISIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report:

07/01/11 1153160

Project Number: Lab ID:

124-11-0023643

Date Collected:

06/21/11 09:02

Collected By:

Client

Date Received:

06/22/11 15:25

Sample Desc: RC 11-5486 (Composite)

		Rep.	Dilutn		Test	Test	
Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
9.0	mg/L	.5	10	SM 4500P-E	06/23	07:00	ALD
55	mg/L	25	5	EPA 351.2	06/23	15:20	JCL
<.0001	mg/l	.0001	1	EPA 245.1	06/29	11:08	JAW
<10	ug/l	10	1	EPA 625	06/30	10:47	MEB
Complete		0	0	EPA 625	06/28	08:00	MEB
	9.0 55 <.0001	9.0 mg/l 55 mg/l <.0001 mg/l <10 ug/l	Result       Unit       Limit         9.0       mg/l       .5         55       mg/l       25         <.0001	Result       Unit       Limit       Factor         9.0       mg/l       .5       10         55       mg/l       25       5         <.0001	Result         Unit         Limit         Factor         Procedure           9.0         mg/l         .5         10         SM 4500P-E           55         mg/l         25         5         EPA 351.2           <.0001	Result         Unit         Limit         Factor         Procedure         Date           9.0         mg/l         .5         10         SM 4500P-E         06/23           55         mg/l         25         5         EPA 351.2         06/23           <.0001	Result         Unit         Limit         Factor         Procedure         Date         Time           9.0         mg/l         .5         10         SM 4500P-E         06/23         07:00           55         mg/l         25         5         EPA 351.2         06/23         15:20           <.0001

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1





## M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

DEPT. OF PUBLIC WORKS

Date of Report: Project Number:

07/01/11 1153160

Lab ID:

124-11-0023645

Date Collected: 06/21/11 09:32

Collected By:

Client

Date Received:

06/22/11 15:25

Sample Desc: FC 11-5497 (Composite)

	Result	Unit 	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	06/29	11:08	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	06/28	18:04	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	06/23	07:30	MEB

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

JUL 19 2011 DEPT. OF PUBLIC WORKS

Date of Report:

07/15/11

Project Number: 1155056

Date Collected: 07/05/11 08:55

124-11-0025722

Collected By:

Client

Date Received:

Lab ID:

07/06/11 15:10

Sample Desc: RC 11-5915 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	07/12	12:40	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	07/11	08:30	MEB

Distribution of Reports:

Reviewed and Approved b

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Reported To: City of Reading WWTP

Attention: Amy L. Morriss

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: Project Number: 1155056

07/15/11

Lab ID:

124-11-0025721

Date Collected: 07/05/11 09:40

Collected By:

Client

Date Received:

07/06/11 15:10

Sample Desc: FC 11-5925 (Composite)

Analyst
1EB
1EB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

AUG 18 2011

DEFT. OF PUBLIC WORKS

Date of Report: Project Number:

08/12/11 1157863

Lab ID:

124-11-0030002

Date Collected: 08/02/11 08:17

Collected By:

Client

Date Received:

08/03/11 15:05

Sample Desc: Raw 11-6829 (Composite, B2EHP)

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/10	08:00	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	08/08	08:00	JLV

Distribution of Reports:

Reviewed and Approved by

Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss Reported To: City of Reading WWTP

> c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: Project Number:

08/12/11 1157863

Lab ID:

124-11-0030011

Date Collected: 08/02/11 09:03

Collected By:

Client

Date Received:

08/03/11 15:05

Sample Desc: Final 11-6841 (Composite, B2EHP)

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/10	08:00	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	08/08	08:00	JLV

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







## UEHIIIUAIE UF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Aut Date Rece.
Date Collected:
Time Collected:
Collected By:

Date of Report:

08/23/11 1157859

0124-11-0029994

Richard Wolfe

Date Collected:

08/03/11

08/02/11

08:15 Client

Sample Description: Belt Press Sludge 11-6825

*	Results	expressed	as	Dry	Weight
---	---------	-----------	----	-----	--------

		Detection			Test	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
				<del></del>			
CHEMISTRY							
RESIDUES							
Total Solids	20.3	%	1	SM 2540G	08/04	16:30	eps
ORGANIC							
BASE NEUTRALS							
Bis(2-Ethylhexyl) phthalate	<123	* mg/kg	123	SW846 8270	08/11	03:14	meb
EXTRACTION							
SW846 8270 Extraction	Complete		0	SW846 8270	08/10	06:30	kle

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: Influent 11-7287 (Composite)

Date of Report:

08/25/11

Project Number: Lab ID:

1158833 124-11-0032307

Date Collected: 08/16/11 08:27

Collected By:

CLIENT

Date Received: 08/17/11 15:25

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/19	12:07	MEB
EXTRACTION  EPA 625 Extraction	Complete		0	0	EPA 625	08/18	06:30	KLE

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: Effluent 11-7299 (Composite)

AUG 29 2017

DEPT. OF PUBLIC WORKS

Date of Report: 08/25/11

Project Number: 1158833 124-11-0032314

Lab ID: Date Collected: 08/16/11 09:02

Collected By: CLIENT 08/17/11 15:25 Date Received:

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	08/19	12:07	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	08/18	06:30	KLE

Distribution of Reports:

Reviewed and Approved by

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall

815 Washington St.

Reading PA 19601

Sample Desc: 11-7963 RC

Date of Report: 09/15/11

Project Number: Lab ID:

1161282

124-11-0035380 Date Collected: 09/06/11 08:38

Collected By: CLIENT

Date Received:

09/07/11 15:25

	Result	Unit	кер. Limit	Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	0.0001	mg/l	.0001	1	EPA 245.1	09/14	10:20	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	09/14	15:24	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: 11-7959 Belt Press Biosolids

DEPT. OF PUBLIC WORKS

Date of Report: 09/15/11

Project Number: 1161280

Lab ID:

124-11-0035378

Date Collected: 09/06/11 08:45

Collected By: CLIENT

Date Received:

09/07/11 15:25

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC  BASE NEUTRALS  Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	09/14	15:24	MEB

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







### VERTIFICATE OF MINALTOID M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: Raw 11-8388 (Composite)

RECEIVED

OCT 10 2011

DEPT. OF PUBLIC WORKS

Date of Report: 10/04/11

Project Number: 1162150

Lab ID:

124-11-0037633 09/20/11 08:32

Date Collected: Collected By:

CLIENT

Date Received:

09/21/11 15:25

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/L	10	1	EPA 625	09/27	13:18	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	09/26	07:00	JLV

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1

This certificate shall not be reproduced except in full without the written approval of M.J. Reider Associates, Inc.





ACIL Seal of Excellence

NELAP accredited by PA. (PADEP #06-00003) (NYSDOH11630) Visit our website to view our current NELAC accreditations for various drinking water, wastewater and solid & chemical materials analytes.



#### VERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: Final 11-8400 (Composite)

RECEIVED

OCT 10 2011 DEPT. OF PUBLIC WORKS

Date of Report: 10/04/11 Project Number: 1162150

Lab ID:

124-11-0037634

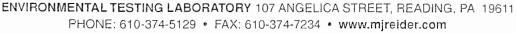
Date Collected: 09/20/11 09:06 Collected By:

CLIENT

Date Received:

09/21/11 15:25

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	09/27	13:18	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	09/26	07:00	JLV


Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1









M.J. Reider Associates, Inc.



Attention: Amy L. Morriss Reported To: City of Reading WWTP

> c/o City Hall 815 Washington St. Reading PA 19601

Sample Desc: 11-8814 Raw (Composite)

OCT 8 1 ZOTA
DEPT. OF PUBLIC WORKS

Date of Report: 10/17/11 Project Number: 1164144

Lab ID: 124-11-0040061

Date Collected: 10/04/11 08:58

Collected By: CLIENT

Date Received: 10/05/11 15:10

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	10/14	14:35	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	10/07	07:00	JLV

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe
Technical Director

reconnical pirec

Page 1 of 1







Attention: Amy L. Morriss

Reported To: City of Reading WWTP

## CERTIFICATE OF ANALYSIS

M.J. Reider Associates, Inc.



DEPT. OF PUBLIC WORKS

Date of Report: 10/17/11

Project Number: 1164144

124-11-0040062

Date Collected: 10/04/11 09:40

Collected By:

CLIENT

Date Received:

10/05/11 15:10

Sample Desc: 11-8826 Final (Composite)

c/o City Hall

815 Washington St.

Reading PA 19601

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	10/14	14:35	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	10/07	07:00	JLV
EPA 625 Extraction	Complete		0	0	EPA 625	10/07	07:00	JLV

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601



Date of Report: 10/24/11

Project Number: 1164143

Lab ID:

124-11-0040060

Date Collected: 10/04/11 08:30

Collected By: Client

Date Received:

10/05/11 15:10

Sample Desc: 11-8792 Belt Press Sludge (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
	nesutt							
CHEMISTRY RESIDUES								
Total Solids ORGANIC	19.7	%	1	1	SM 2540G	10/06	14:10	EPS
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<5	mg/kg	5	10	SW846 8270	10/18	12:26	MEB
EXTRACTION SW846 8270 Extraction	complete	mg/l	1	1	SW846 8270	10/14	07:00	JLV

#### COMMENTS

01 The elevated reporting limits for the semi-volatiles was due to sample matrix interference.

02 The sw846 8270 method surrogates were not added to the sample, Blank, QC and QC duplicate before the extraction.

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEIVED

OCT 3 1 2011

DEPT. OF PUBLIC WORKS

Date of Report:

10/24/11 Project Number: 1164937

Lab ID:

124-11-0042059

Date Collected: 10/18/11 07:19

Collected By: Client

Date Received:

10/19/11 15:30

Sample Desc: RC 11-9265 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	0.0001	mg/l	.0001	1	EPA 245.1	10/20	10:40	RLS
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	10/21	12:30	MEB
EXTRACTION								
EPA 625 Extraction	complete	mg/l	1	1	EPA 625	10/20	07:00	JLV

#### CUMENTS

01 The epa 625 method surrogate 2,4,6-Tribromophenol had low recovery in the sample, QC and Blank.

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

RECEIVED

OCT 3 1 2011

DEPT. OF PUBLIC WORKS

Date of Report:

10/25/11 Project Number: 1164937

Lab ID:

124-11-0042058

Date Collected: 10/18/11 08:50

Collected By:

CLIENT

Date Received:

10/19/11 15:30

Sample Desc: FC 11-9277 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL						40/00	40.10	
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	10/20	10:40	RLS
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	10/21	12:30	MEB
EXTRACTION								
EPA 625 Extraction	complete	mg/l	1	1	EPA 625	10/20	07:00	JLV

#### COMMENTS

01 The epa 625 method surrogate 2,4,6-Tribromophenol had low recovery in the sample,Blank and QC.

Distribution of Reports:

Reviewed and Approved by:

Richard Wolfe Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

**Peceived** NOV 15 2011

DEPT. OF PUBLIC WORKS

Date of Report:

11/09/11

Project Number: Lab ID:

1166691

124-11-0043911 Date Collected: 11/01/11 09:00

Collected By:

Client

Date Received:

11/02/11 15:20

Sample Desc: RC 11-9720 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	11/08	10:46	JAW
ORGANIC								
BASE NEUTRALS  Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	11/04	13:39	MEB
EXTRACTION EPA 625 Extraction	Complete		0	0	EPA 625	11/04	07:00	JLV

#### COMMENTS

One or more semi-volatile compounds had high recovery in the CCV 01 and the Qc but none of these compounds were detected in the sample above laboratory's reporting limit.

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







## CERTIFICATE OF ANALYSIS M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

NOV 15 2011

DEPT. OF PUBLIC WORKS

Date of Report: 11/09/11

Project Number: 1166691

Client

Lab ID:

124-11-0043910

Date Collected: 11/01/11 09:35

Collected By:

Date Received:

11/02/11 15:20

Sample Desc: FC (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	11/08	10:46	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	11/04	13:39	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	11/04	07:00	JLV

#### COMMENTS

One or more semi-volatile compounds had high recovery in the CCV 01 and the QC but none of these compounds were detected in this sample above the laboratory's reporting limit.

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: 11/23/11 Project Number:

1167592

Lab ID:

124-11-0046031

Date Collected: 11/15/11 09:00

Collected By:

Client

Date Received:

11/16/11 15:35

Sample Desc: 11-10167 Raw

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	0.0003	mg/l	.0001	1	EPA 245.1	11/22	10:47	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	11/17	18:46	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	11/17	07:00	MEB

Distribution of Reports:

Reviewed and Approved by

Richard Wolfe Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

PECENED

DEC 0 8 2011

DEPT. OF PUBLIC WORKS

Date of Report: 11/23/11

Project Number: 1167590

Lab ID:

124-11-0046030

Date Collected: 11/15/11 09:31

Collected By:

Client

11/16/11 15:35 Date Received:

Sample Desc: 11-10180 Final

			Rep.	Dilutn		Test	Test	
	Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	11/22	10:47	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	11/17	18:46	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	11/17	07:00	MEB

Distribution of Reports:

Reviewed and Approved by:

. Richard Wolfe

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

PECENED

DEC 22 2011

DEFT. OF PUBLIC WORKS

Date of Report: Project Number:

12/19/11 1169719

Lab ID:

124-11-0048614

Date Collected: 12/06/11 09:35

Collected By:

Client

Date Received:

12/07/11 15:10

Sample Desc: RC 11-10834 (Composite)

		Rep.	Dilutn		Test	Test	
Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
0.0003	mg/l	.0001	1	EPA 245.1	12/16	11:30	JAW
10	ug/l	10	2	EPA 625	12/12	11:42	MEB
Complete		0	0	EPA 625	12/09	07:00	KLE
	0.0003	0.0003 mg/l 10 ug/l	Result Unit Limit 0.0003 mg/l .0001 10 ug/l 10	Result       Unit       Limit       Factor         0.0003       mg/l       .0001       1         10       ug/l       10       2	Result       Unit       Limit       Factor       Procedure         0.0003       mg/l       .0001       1       EPA 245.1         10       ug/l       10       2       EPA 625	Result       Unit       Limit       Factor       Procedure       Date         0.0003       mg/l       .0001       1       EPA 245.1       12/16         10       ug/l       10       2       EPA 625       12/12	Result       Unit       Limit       Factor       Procedure       Date       Time         0.0003       mg/l       .0001       1       EPA 245.1       12/16       11:30         10       ug/l       10       2       EPA 625       12/12       11:42

istribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

REDENTE

DEC 22 2011

DEPT. OF PUBLIC WORKS

Date of Report:

12/19/11 1169719

Project Number: Lab ID:

124-11-0048613

Date Collected: Collected By:

12/06/11 09:17 Client

Date Received:

12/07/11 15:10

Sample Desc: FC 11-10846 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
INORGANIC								
TOTAL								
Mercury, Total	<.0001	mg/l	.0001	1	EPA 245.1	12/16	11:30	JAW
ORGANIC								
BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	12/12	11:42	MEB
EXTRACTION								
EPA 625 Extraction	Complete		0	0	EPA 625	12/09	07:00	KLE

Distribution of Reports:

Reviewed and Approved by:

Technical Director

Page 1 of 1







M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported to: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

Date of Report: 12/19/11

Project Number: 1169718

Lab ID:

0124-11-0048612

Account Rep: Date Received: 12/07/11

Richard Wolfe

Date Collected: 12/06/11

Time Collected: 10:22

Collected By:

Client

Sample Description: 11-10847 Belt Press Sludge

* Results expressed as Dry Weight

			Detection		Test	Test	
	Results	Unit	Limit	Procedure	Date	Time	Analyst
CHEMISTRY							
RESIDUES							
Total Solids	17.4	%	1	SM 2540G	12/12	18:00	jxs
ORGANIC							
BASE NEUTRALS							
Bis(2-Ethylhexyl) phthalate	<5.75	* mg/kg	5.75	SW846 8270	12/16	09:12	meb
EXTRACTION							
SW846 8270 Extraction	Complete		0	\$W846 8270	12/15	07:00	meb
CC ITS:							

1 - The elevated reporting limits for the semi-volatiles was due to sample matrix interference.

Distribution of Report:

Amy L. Morriss - City of Reading WWTP

M. J. Reider Associates, Inc. Reviewed and Approved By

Richard Wolfe

Technical Director

Page 1 of 1







## WESSELL IN MILES SIDE M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

PEDERED

JAN 03 2012

DEFI. OF PUBLIC VALUES

Date of Report:

12/29/11

Lab ID:

124-11-0050547

Date Collected: 12/20/11 09:17

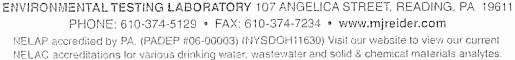
Collected By:

Date Received: 12/21/11 15:05

CLIENT

Sample Desc: Raw 11-11272 (Composite)

		Rep.	Dilutn				
Result	Unit	Limit	Factor	Procedure	Date	Time	Analyst
							~
<10	ug/l	10	1	EPA 625	12/28	01:22	MEB
Complete		0	0	EPA 625	12/23	06:30	MEB
		<10 ug/l	Result   Unit   Limit	Result	Result Unit Limit Factor Procedure	Result	Result


Distribution of Reports:

Reviewed and Approved b

Richard Wolfe Technical Director

Page 1 of 1









# M.J. Reider Associates, Inc.



Attention: Amy L. Morriss

Reported To: City of Reading WWTP

c/o City Hall 815 Washington St. Reading PA 19601

JAN 03 7016

DEFT. OF FULLIC WOTAS

Date of Report:

12/29/11

Lab ID:

124-11-0050548

Date Collected:

12/20/11 09:47

Collected By: CLIENT

Date Received:

12/21/11 15:05

Sample Desc: Final 11-11284 (Composite)

	Result	Unit	Rep. Limit	Dilutn Factor	Procedure	Test Date	Test Time	Analyst
ORGANIC BASE NEUTRALS								
Bis(2-Ethylhexyl) phthalate	<10	ug/l	10	1	EPA 625	12/28	01:22	MEB
EXTRACTION EPA 625 Extraction	Complete		0	0	EPA 625	12/23	06:30	MEB

#### COMMENTS

01 The epa 625 method Internal Standard Chrysene-d12 was low in the sample.

Distribution of Reports:

Reviewed and Approved by:

Kichara wotre

Technical Director

Page 1 of 1





	Influent	
TVN		Ortho P
1 1/1/1	TOTAL	Olulo F
mg/L	mg/L	mg/L
	9.20	
		1.60
		1.30 2.60
		0.87
		1.59
31.00		1.57
41.0	6.0	3.82
57.0	8.2	1.94
52.0	10.8	
		6.00
50.0	8.6	3.9
44.0	0.6	3.50
44.0	9.6	5.50
500	7.0	3.30
38.0	7.0	3.50
59.0	10.4	3.50
37.0	10.1	4.82
57.0	13.0	
		3.89
55.0	9.0	
		4.34
56.0	8.3	
		4.04
54.8	9.7	4.2
70.0	10.2	
65.0	8.2	4.60
55.0	12.2	4.60
33.0	13.2	3.52
58.0	10.6	3.32
36.0	10.0	3.20
62.0	10.6	3.8
	4	
		6.50
66.0	8.3	
		3.03
45.0	5.7	
		4.00
	1	4.5
46.5	6.8	2.70
165	6.0	2.70
	4	2.7
34.0	0.0	2.53
54.0	6.0	2.53
		1
	7.5	3.76
45.0	7.3	3.8
45.0	1	
45.0 60.0	18.3	
	,	3.25
	39.60 53.10 90.80 23.20 51.68 41.0 57.0 52.0 50.0 50.0 50.0 55.0 56.0 54.8 70.0 55.0 65.0 66.0	mg/L mg/L 9.20 39.60 4.40 53.10 5.50 90.80 5.10 23.20 2.10 51.68 5.26 9.20 41.0 6.0 57.0 8.2 52.0 10.8 50.0 8.8 50.0 8.6 44.0 9.6 58.0 7.8 59.0 10.4 57.0 13.0 55.0 9.0 56.0 8.3 54.8 9.7 70.0 10.2 65.0 8.2 55.0 10.6 60.0 8.3 45.0 5.7 53.7 7.2 46.5 6.8 54.0 6.0 54.0 6.0



## Pennsylvania Department of Environmental Protections

#### 909 Elmerton Avenue Harrisburg, PA 17110-8200

AUG 3 1 2004

Southcentral Regional Office

CERTIFIED MAIL NO. 7002 2030 0007 9114 5180

Ms. Deborah Hoag, Environmental Division Manager City of Reading Environmental Division 815 Washington Street Reading, PA 19601-3690

NPDES Permit No. PA 0026549 Reading City, Berks County

Current amended

permit!

Mercury is only

powarme

717-705-4760

Dear Ms. Hoag:

Your amendment is enclosed. Read the permit and the special conditions carefully.

A Discharge Monitoring Report (DMR) is included. The master DMR will be prepared and distributed by the U.S. Environmental Protection Agency (EPA) in the near future. Use the enclosed DMR Form until you receive a master from EPA. The reporting forms must be submitted to the Department and the EPA Regional Office as instructed in the permit and the enclosed Instruction Sheet.

Re: Sewage

COR STP

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa. C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, PO Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

Sincerely,

If you have any questions, please call Ms. Marybeth Luttenberger of the Permits Section at 717-705-4815.

Raymond P. Zomok,

Chief Soils & Waterways Section Water Management Program

Enclosures

cc: U.S. Environmental Protection Agency



## Pennsylvania Department of Environmental Protection WATER MANAGEMENT PROGRAM

# AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM NPDES PERMIT NO. PA 0026549 Amendment No. 1

In compliance with the provisions of the Clean Water Act, 33 U.S.C. Section 1251 et seq. (the "Act") and Pennsylvania's Clean Streams Law, as amended, 35 P.S. Section 691.1 et seq.,

City of Reading 815 Washington Street Reading, PA 19601-3960

is hereby authorized to discharge from a facility located in Reading City, Berks County to Schuylkill River in Watershed 3-C in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts A, B, and C hereof.

#### THIS PERMIT SHALL BECOME EFFECTIVE ON MAY 1, 2001

#### AND EXPIRE AT MIDNIGHT, MAY 1, 2006

The authority granted by this permit is subject to the following further qualifications:

- 1. If there is a conflict between the application, its supporting documents and/or amendments and the terms and conditions of this permit, the terms and conditions shall apply.
- 2. Failure to comply with the terms or conditions of this permit is grounds for enforcement action; for permit termination, revocation and reissuance or modification; or for denial of a permit renewal application.
- 3. Application for renewal of this permit, or notification of intent to cease discharging by the expiration date, must be submitted to the Department at least 180 days prior to the above expiration date (unless permission has been granted by the Department for submission at a later date), using the appropriate NPDES Permit Application Form. In the event that a timely and complete application for renewal has been submitted and the Department is unable, through no fault of the permittee, to reissue the permit before the above expiration date, the terms and conditions to this permit will be automatically continued and will remain fully effective and enforceable pending the grant or denial of the application for permit renewal.

1.	This pe	ermit	does	not	constitute	authorization	to	construct	or	make	modifications	to	wastewater	treatment
	facilitie	s nece	essary	to n	neet the terr	ns and conditi	ons	of this per	mit	. /			$\bigcap$	0

PERMIT ISSUED: April 10, 2001	BY: TEMERAL - KINGK
SEP - 1 2004 PERMIT AMENDED:	Raymond P. Zomok, P.E. Acting Pogram Manager Southcentral Regional Office



#### PART A

LAT: 40°18'13" LONG: 75°55'13"

#### I. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

- A. Outfall 001, which receives wastewater from the wastewater treatment plant.
  - 1. Numbers in parentheses () refer to Footnotes/Additional Requirements/Information on page 3.
  - 2. Samples taken in compliance with the monitoring requirements shall be taken at the following location(s):
    - a. Composite samples may be taken before or after disinfection.
    - b. Grab samples shall be taken after disinfection.

	T	DISCH.	ARGE LIM	ITATION	S ⁽¹⁾			1	ORING EMENTS
	Mas	s Units (lbs/c	lay) ⁽³⁾		Concentr	ations (mg/l ⁽⁴⁾		(5)	
Discharge ⁽²⁾ Parameter	Average Monthly	Average Weekly	Maximum Daily	Average Monthly	Average Weekly	Maximum Daily	Inst. Maximum	Monitoring Frequency	Sample Type
Flow (mgd)	Monitor & Report	XXX	Monitor & Report	XXX	XXX	XXX	XXX	Continuous	Measured
pH (S.U.)	xxx	XXX	xxx		From 6.0 t	to 9.0 inclusive		1/day	Grab
D.O.	xxx	xxx	xxx	N	linimum of 5	.0 mg/l at all ti	mes	Monitoring Frequency  Continuous  1/day  1/day  1/shift  1/day  1/day  1/day  1/day  1/day  1/day  1/day	Grab
Total Residual Chlorine	XXX	XXX	XXX	0.40	XXX	XXX	1.31	1/shift	Grab
Total Suspended Solids	7,130	10,696	XXX	30	45	XXX	60	1/day	24-hour comp
CBOD ₅ (5/1 to 10/31)	3,336	5,004	XXX	20	30	XXX	40	1/day	24-hour comp
CBOD ₅ (11/1 to 4/30)	4,170	6,255	xxx	25	40	xxx	50	I/day	24-hour comp
NH ₃ -N (5/1 to 10/31)	1,000	xxx	XXX	6.0	xxx	xxx	12	1/day	24-hour comp
NH ₃ -N (11/1 to 4/30)	3,000	xxx	XXX	18	XXX	XXX	24	1/day	24-hour comp
Color	XXX	xxx	XXX	186	xxx	XXX	465	1/day	24-hour comp
Fecal Coliform ⁽⁶⁾ (5/1 to 9/30)	XXX	xxx	XXX	200	XXX	xxx	XXX	1/day	Grab
Fecal Coliform ⁽⁶⁾ (10/1 to 4/30)	XXX	xxx	XXX	10,000	XXX	XXX	XXX	l/day	Grab
Total Mercury	0.055	xxx	XXX	0.00023	xxx	XXX	0.00046	1/week	24-hour comp